127 lines
5.3 KiB
C++
127 lines
5.3 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 04.05.2018
|
||
|
//
|
||
|
|
||
|
#include <op_boilerplate.h>
|
||
|
#if NOT_EXCLUDED(OP_upsampling3d)
|
||
|
|
||
|
#include <ops/declarable/CustomOperations.h>
|
||
|
#include <ops/declarable/helpers/convolutions.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////
|
||
|
CUSTOM_OP_IMPL(upsampling3d, 1, 1, false, 0, 3) {
|
||
|
auto input = INPUT_VARIABLE(0); // [bS, iC, iD, iH, iW] (NCDHW) or [bS, iD, iH, iW, iC] (NDHWC)
|
||
|
auto output = OUTPUT_VARIABLE(0); // [bS, iC, factorD*iD, factorH*iH, factorW*iW ] (NCDHW) or [bS, factorD*iD, factorH*iH, factorW*iW, iC] (NDHWC)
|
||
|
|
||
|
const int factorD = INT_ARG(0);
|
||
|
const int factorH = INT_ARG(1);
|
||
|
const int factorW = INT_ARG(2);
|
||
|
const int isNCDHW = block.getIArguments()->size() > 3 ? INT_ARG(3) : 0; // INT_ARG(3): 0-NCDHW, 1-NDHWC
|
||
|
|
||
|
REQUIRE_TRUE(input->rankOf() == 5, 0, "UPSAMPLING3D op: input should be 5D, but got %i instead!", input->rankOf());
|
||
|
REQUIRE_TRUE(output->rankOf() == 5, 0, "UPSAMPLING3D op: output should be 5D, but got %i instead!", output->rankOf());
|
||
|
|
||
|
ConvolutionUtils::upsampling3d(block, *input, *output, factorD, factorH, factorW, (bool)isNCDHW);
|
||
|
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
DECLARE_TYPES(upsampling3d) {
|
||
|
getOpDescriptor()
|
||
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
||
|
->setAllowedOutputTypes({ALL_FLOATS});
|
||
|
}
|
||
|
|
||
|
DECLARE_SHAPE_FN(upsampling3d) {
|
||
|
|
||
|
auto inputShapeInfo = inputShape->at(0);
|
||
|
|
||
|
REQUIRE_TRUE(inputShapeInfo[0] == 5, 0, "UPSAMPLING2D op: input should be 5D, but got %i instead!", inputShapeInfo[0]);
|
||
|
|
||
|
const int factorD = INT_ARG(0);
|
||
|
const int factorH = INT_ARG(1);
|
||
|
const int factorW = INT_ARG(2);
|
||
|
const int isNCDHW = block.getIArguments()->size() > 3 ? INT_ARG(3) : 0; // INT_ARG(3): 0-NCHW, 1-NHWC
|
||
|
|
||
|
Nd4jLong *outputShapeInfo = nullptr;
|
||
|
ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inputShapeInfo[0]), Nd4jLong);
|
||
|
|
||
|
outputShapeInfo[0] = inputShapeInfo[0];
|
||
|
outputShapeInfo[1] = inputShapeInfo[1];
|
||
|
|
||
|
if(isNCDHW) {
|
||
|
outputShapeInfo[2] = inputShapeInfo[2];
|
||
|
outputShapeInfo[3] = inputShapeInfo[3] * factorD;
|
||
|
outputShapeInfo[4] = inputShapeInfo[4] * factorH;
|
||
|
outputShapeInfo[5] = inputShapeInfo[5] * factorW;
|
||
|
}
|
||
|
else {
|
||
|
outputShapeInfo[2] = inputShapeInfo[2] * factorD;
|
||
|
outputShapeInfo[3] = inputShapeInfo[3] * factorH;
|
||
|
outputShapeInfo[4] = inputShapeInfo[4] * factorW;
|
||
|
outputShapeInfo[5] = inputShapeInfo[5];
|
||
|
}
|
||
|
|
||
|
ShapeUtils::updateStridesAndType(outputShapeInfo, inputShapeInfo, shape::order(inputShapeInfo));
|
||
|
|
||
|
return SHAPELIST(CONSTANT(outputShapeInfo));
|
||
|
}
|
||
|
|
||
|
DECLARE_TYPES(upsampling3d_bp) {
|
||
|
getOpDescriptor()
|
||
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
||
|
->setAllowedOutputTypes({ALL_FLOATS});
|
||
|
}
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////
|
||
|
CUSTOM_OP_IMPL(upsampling3d_bp, 2, 1, false, 0, 0) {
|
||
|
// NDArray<T>* input = INPUT_VARIABLE(0); // [bS, iC, iD, iH, iW] (NCDHW) or [bS, iD, iH, iW, iC] (NDHWC)
|
||
|
auto gradO = INPUT_VARIABLE(1); // [bS, iC, factorD*iD, factorH*iH, factorW*iW ] (NCDHW) or [bS, factorD*iD, factorH*iH, factorW*iW, iC] (NDHWC)
|
||
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iC, iD, iH, iW] (NCDHW) or [bS, iD, iH, iW, iC] (NDHWC)
|
||
|
|
||
|
const int isNCDHW = block.getIArguments()->size() > 0 ? INT_ARG(0) : 0; // INT_ARG(0): 0-NCHW, 1-NHWC
|
||
|
|
||
|
// REQUIRE_TRUE(input->rankOf() == 5, 0, "UPSAMPLING3D_BP op: input array must be 4D, but got %i instead!", input->rankOf());
|
||
|
REQUIRE_TRUE(gradO->rankOf() == 5, 0, "UPSAMPLING3D_BP op: output's gradient array must be 4D, but got %i instead!", gradO->rankOf());
|
||
|
REQUIRE_TRUE(gradI->rankOf() == 5, 0, "UPSAMPLING3D_BP op: input's gradient array must be 4D, but got %i instead!", gradI->rankOf());
|
||
|
|
||
|
ConvolutionUtils::upsampling3dBP(block, *gradO, *gradI, (bool)isNCDHW);
|
||
|
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
|
||
|
DECLARE_SHAPE_FN(upsampling3d_bp) {
|
||
|
|
||
|
REQUIRE_TRUE(inputShape->at(0)[0] == 5, 0, "UPSAMPLING3D_BP op: input array must be 4D, but got %i instead!", inputShape->at(0)[0]);
|
||
|
REQUIRE_TRUE(inputShape->at(1)[0] == 5, 0, "UPSAMPLING3D_BP op: output's gradient array must be 4D, but got %i instead!", inputShape->at(1)[0]);
|
||
|
|
||
|
auto gradIShapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShape->at(0), inputShape->at(1), false, block.getWorkspace());
|
||
|
|
||
|
return SHAPELIST(CONSTANT(gradIShapeInfo));
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|