cavis/libnd4j/include/ops/declarable/generic/nn/convo/pointwiseConv2d.cpp

113 lines
6.2 KiB
C++
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma, created on 20.03.2018
//
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/convolutions.h>
namespace nd4j {
namespace ops {
CUSTOM_OP_IMPL(pointwise_conv2d, 2, 1, false, 0, 0) {
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
auto weights = INPUT_VARIABLE(1); // [1, 1, iC, oC] always
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
auto output = OUTPUT_VARIABLE(0); // [bS, iH, iW, oC] (NHWC) or [bS, oC, iH, iW] (NCHW)
REQUIRE_TRUE(input->rankOf() == 4, 0, "CUSTOM POINTWISECONV2D OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf());
REQUIRE_TRUE(weights->rankOf() == 4, 0, "CUSTOM POINTWISECONV2D OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf());
if(bias)
REQUIRE_TRUE(bias->rankOf() <= 2, 0, "CUSTOM POINTWISECONV2D OP: rank of biases array must be equal <= 2, but got %i instead !", bias->rankOf());
int kH = 1; // filter(kernel) height
int kW = 1; // filter(kernel) width
int sH = 1; // strides height
int sW = 1; // strides width
int pH = 0; // paddings height
int pW = 0; // paddings width
int dH = 1; // dilations height
int dW = 1; // dilations width
int isNCHW = block.getIArguments()->size() > 0 ? !INT_ARG(0) : 1; // INT_ARG(0): 0-NCHW, 1-NHWC
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
std::string expectedWeightsShape = ShapeUtils::shapeAsString({1, 1, iC, oC});
REQUIRE_TRUE(expectedWeightsShape == ShapeUtils::shapeAsString(weights), 0, "CUSTOM POINTWISECONV2D OP: wrong shape of weights array, expected is %s, but got %s instead !", expectedWeightsShape.c_str(), ShapeUtils::shapeAsString(weights).c_str());
if (bias)
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM POINTWISECONV2D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
ConvolutionUtils::conv2d(block, input, weights, bias, output, kH,kW, sH,sW, pH,pW, dH,dW, 1/*isSameMode*/, isNCHW);
2019-06-06 14:21:15 +02:00
return Status::OK();
}
DECLARE_TYPES(pointwise_conv2d) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
DECLARE_SHAPE_FN(pointwise_conv2d) {
Nd4jLong* inputShapeInfo = inputShape->at(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
Nd4jLong* weightsShapeInfo = inputShape->at(1); // [1, 1, iC, oC] always
Nd4jLong* biasShapeInfo = block.width() > 2 ? inputShape->at(2) : nullptr; // [oC]
const int rank = 4;
REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "CUSTOM POINTWISECONV2D OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo[0]);
REQUIRE_TRUE(weightsShapeInfo[0] == rank, 0, "CUSTOM POINTWISECONV2D OP: rank of weights array must be equal to %i, but got %i instead !", rank, weightsShapeInfo[0]);
int isNCHW = block.getIArguments()->size() > 0 ? !INT_ARG(0) : 1; // INT_ARG(0): 0-NCHW, 1-NHWC
int indIOioC, indWoC(3);
if(!isNCHW)
indIOioC = 3;
else
indIOioC = 1;
const int bS = inputShapeInfo[1]; // batch size
const int iC = inputShapeInfo[indIOioC+1]; // input channels
const int oC = weightsShapeInfo[indWoC+1]; // output channels
std::string expectedWeightsShape = ShapeUtils::shapeAsString({1, 1, iC, oC});
REQUIRE_TRUE(expectedWeightsShape == ShapeUtils::shapeAsString(weightsShapeInfo), 0, "POINTWISECONV2D OP: wrong shape of weights array, expected is %s, but got %s instead !", expectedWeightsShape.c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str());
if (biasShapeInfo)
REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "POINTWISECONV2D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo));
auto outputShapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShapeInfo, weightsShapeInfo, true, block.getWorkspace());
// do not forget to put oC instead of iC in outputShapeInfo
outputShapeInfo[indIOioC + 1] = oC;
shape::updateStrides(outputShapeInfo, shape::order(inputShapeInfo));
return SHAPELIST(CONSTANT(outputShapeInfo));
}
}
}