2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright ( c ) 2015 - 2018 Skymind , Inc .
*
* This program and the accompanying materials are made available under the
* terms of the Apache License , Version 2.0 which is available at
* https : //www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an " AS IS " BASIS , WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied . See the
* License for the specific language governing permissions and limitations
* under the License .
*
* SPDX - License - Identifier : Apache - 2.0
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
//
// @author raver119@gmail.com
// @author Yurii Shyrma
# include <op_boilerplate.h>
# if NOT_EXCLUDED(OP_conv1d)
# include <ops/declarable/DeclarableOp.h>
# include <ops/declarable/CustomOperations.h>
# include <ops/declarable/helpers/convolutions.h>
namespace nd4j {
namespace ops {
2019-11-29 12:14:30 +01:00
CUSTOM_OP_IMPL ( conv1d , 2 , 1 , false , 0 , 5 ) {
2019-06-06 14:21:15 +02:00
auto input = INPUT_VARIABLE ( 0 ) ; // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW)
auto weights = INPUT_VARIABLE ( 1 ) ; // [kW, iC, oC] always
auto bias = block . width ( ) > 2 ? INPUT_VARIABLE ( 2 ) : nullptr ; // [oC]
auto output = OUTPUT_VARIABLE ( 0 ) ; // [bS, oW, oC] (NWC) or [bS, oC, oW] (NCW)
int kW = INT_ARG ( 0 ) > 0 ? INT_ARG ( 0 ) : static_cast < int > ( weights - > sizeAt ( 0 ) ) ; // filter(kernel) width
int sW = INT_ARG ( 1 ) ; // strides width
int pW = INT_ARG ( 2 ) ; // paddings width
2019-11-29 12:14:30 +01:00
int dW = INT_ARG ( 3 ) ; // dilations width
int paddingMode = INT_ARG ( 4 ) ; // 0-VALID, 1-SAME, 2-CAUSAL
int isNCW = block . getIArguments ( ) - > size ( ) > 5 ? ! INT_ARG ( 5 ) : 1 ; // INT_ARG(4): 0-NCW, 1-NWC
2019-06-06 14:21:15 +02:00
const int rank = 3 ;
REQUIRE_TRUE ( input - > rankOf ( ) = = rank , 0 , " CUSTOM CONV1D OP: rank of input array must be equal to %i, but got %i instead ! " , rank , input - > rankOf ( ) ) ;
REQUIRE_TRUE ( weights - > rankOf ( ) = = rank , 0 , " CUSTOM CONV1D OP: rank of weights array must be equal to %i, but got %i instead ! " , rank , weights - > rankOf ( ) ) ;
int indIOioC , indIiW , indWoC ( 2 ) ;
if ( ! isNCW ) {
indIOioC = 2 ; indIiW = 1 ;
}
else {
indIOioC = 1 ; indIiW = 2 ;
}
int bS = input - > sizeAt ( 0 ) ; // batch size
int iW = input - > sizeAt ( indIiW ) ; // input width
int iC = input - > sizeAt ( indIOioC ) ; // input channels
int oC = weights - > sizeAt ( indWoC ) ; // output channels
std : : string expectedWeightsShape = ShapeUtils : : shapeAsString ( { kW , iC , oC } ) ;
REQUIRE_TRUE ( expectedWeightsShape = = ShapeUtils : : shapeAsString ( weights ) , 0 , " CUSTOM CONV1D OP: wrong shape of weights array, expected is %s, but got %s instead ! " , expectedWeightsShape . c_str ( ) , ShapeUtils : : shapeAsString ( weights ) . c_str ( ) ) ;
if ( bias )
REQUIRE_TRUE ( bias - > rankOf ( ) < = 2 & & oC = = bias - > lengthOf ( ) , 0 , " CUSTOM CONV1D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , bias - > rankOf ( ) , bias - > lengthOf ( ) ) ;
std : : vector < Nd4jLong > reshapeForInput , reshapeForOutput ;
if ( ! isNCW ) {
reshapeForInput = { input - > sizeAt ( 0 ) , 1 , input - > sizeAt ( 1 ) , input - > sizeAt ( 2 ) } ; // [bS, iW, iC] -> [bS, 1, iW, iC]
reshapeForOutput = { output - > sizeAt ( 0 ) , 1 , output - > sizeAt ( 1 ) , output - > sizeAt ( 2 ) } ; // [bS, oW, oC] -> [bS, 1, oW, oC]
}
else {
reshapeForInput = { input - > sizeAt ( 0 ) , input - > sizeAt ( 1 ) , 1 , input - > sizeAt ( 2 ) } ; // [bS, iC, iW] -> [bS, iC, 1, iW]
reshapeForOutput = { output - > sizeAt ( 0 ) , output - > sizeAt ( 1 ) , 1 , output - > sizeAt ( 2 ) } ; // [bS, oC, oW] -> [bS, oC, 1, oW]
}
auto inputReshaped = input - > reshape ( input - > ordering ( ) , reshapeForInput ) ;
auto outputReshaped = output - > reshape ( output - > ordering ( ) , reshapeForOutput ) ;
auto weightsReshaped = weights - > reshape ( weights - > ordering ( ) , { 1 , weights - > sizeAt ( 0 ) , weights - > sizeAt ( 1 ) , weights - > sizeAt ( 2 ) } ) ; // [kW, iC, oC] -> [1, kW, iC, oC]
2019-11-29 12:14:30 +01:00
nd4j : : ops : : conv2d conv2d ;
const Nd4jStatus status = conv2d . execute ( { & inputReshaped , & weightsReshaped , bias } , { & outputReshaped } , { } , { 1 , kW , 1 , sW , 0 , pW , 1 , dW , paddingMode , ! isNCW } , { } ) ;
if ( status ! = ND4J_STATUS_OK )
return status ;
// ConvolutionUtils::conv2d(block, &inputReshaped, &weightsReshaped, bias, &outputReshaped, 1,kW, 1,sW, 0,pW, 1,dW, paddingMode, isNCW);
2019-06-06 14:21:15 +02:00
return Status : : OK ( ) ;
}
DECLARE_SHAPE_FN ( conv1d ) {
auto inputShapeInfo = inputShape - > at ( 0 ) ;
auto weightsShapeInfo = inputShape - > at ( 1 ) ;
Nd4jLong * biasShapeInfo = block . width ( ) > 2 ? inputShape - > at ( 2 ) : nullptr ;
int kW = INT_ARG ( 0 ) > 0 ? INT_ARG ( 0 ) : static_cast < int > ( shape : : sizeAt ( weightsShapeInfo , 0 ) ) ; // filter(kernel) width
int sW = INT_ARG ( 1 ) ; // strides width
int pW = INT_ARG ( 2 ) ; // paddings width
2019-11-29 12:14:30 +01:00
int dW = INT_ARG ( 3 ) ; // dilations width
int paddingMode = INT_ARG ( 4 ) ; // 0-VALID, 1-SAME
int isNCW = block . getIArguments ( ) - > size ( ) > 5 ? ! INT_ARG ( 5 ) : 1 ; // INT_ARG(4): 1-NWC, 0-NCW
2019-06-06 14:21:15 +02:00
int indIOioC , indIiW , indWoC ( 2 ) ;
if ( ! isNCW ) {
indIOioC = 2 ; indIiW = 1 ;
}
else {
indIOioC = 1 ; indIiW = 2 ;
}
const int rank = 3 ;
REQUIRE_TRUE ( inputShapeInfo [ 0 ] = = rank , 0 , " CUSTOM CONV1D OP: rank of input array must be equal to %i, but got %i instead ! " , rank , inputShapeInfo ) ;
REQUIRE_TRUE ( weightsShapeInfo [ 0 ] = = rank , 0 , " CUSTOM CONV1D OP: rank of weights array must be equal to %i, but got %i instead ! " , rank , weightsShapeInfo ) ;
int bS = inputShapeInfo [ 1 ] ; // batch size
int iW = inputShapeInfo [ indIiW + 1 ] ; // input width
int iC = inputShapeInfo [ indIOioC + 1 ] ; // input channels
int oC = weightsShapeInfo [ indWoC + 1 ] ; // output channels
std : : string expectedWeightsShape = ShapeUtils : : shapeAsString ( { kW , iC , oC } ) ;
REQUIRE_TRUE ( expectedWeightsShape = = ShapeUtils : : shapeAsString ( weightsShapeInfo ) , 0 , " CUSTOM CONV1D OP: wrong shape of weights array, expected is %s, but got %s instead ! " , expectedWeightsShape . c_str ( ) , ShapeUtils : : shapeAsString ( weightsShapeInfo ) . c_str ( ) ) ;
if ( biasShapeInfo )
REQUIRE_TRUE ( biasShapeInfo [ 0 ] < = 2 & & oC = = shape : : length ( biasShapeInfo ) , 0 , " CUSTOM CONV1D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , biasShapeInfo [ 0 ] , shape : : length ( biasShapeInfo ) ) ;
int oH , oW ; // output height, width
2019-11-29 12:14:30 +01:00
ConvolutionUtils : : calcOutSizePool2D ( oH , oW , 1 , kW , 1 , sW , 0 , pW , 1 , dW , 1 , iW , paddingMode ) ;
2019-06-06 14:21:15 +02:00
Nd4jLong * outputShapeInfo = nullptr ;
ALLOCATE ( outputShapeInfo , block . getWorkspace ( ) , shape : : shapeInfoLength ( rank ) , Nd4jLong ) ;
outputShapeInfo [ 0 ] = 3 ;
outputShapeInfo [ 1 ] = bS ;
if ( isNCW ) {
outputShapeInfo [ 2 ] = oC ;
outputShapeInfo [ 3 ] = oW ;
} else {
outputShapeInfo [ 2 ] = oW ;
outputShapeInfo [ 3 ] = oC ;
}
ShapeUtils : : updateStridesAndType ( outputShapeInfo , weightsShapeInfo , shape : : order ( weightsShapeInfo ) ) ;
return SHAPELIST ( CONSTANT ( outputShapeInfo ) ) ;
}
DECLARE_TYPES ( conv1d ) {
getOpDescriptor ( )
- > setAllowedInputTypes ( 0 , { ALL_FLOATS , ALL_INTS , DataType : : QINT8 , DataType : : QINT16 } )
- > setAllowedInputTypes ( 1 , { ALL_FLOATS } )
- > setAllowedInputTypes ( 2 , { ALL_FLOATS } )
- > setAllowedOutputTypes ( 0 , { ALL_FLOATS } ) ;
}
//////////////////////////////////////////////////////////////////////////
2019-11-29 12:14:30 +01:00
CUSTOM_OP_IMPL ( conv1d_bp , 3 , 2 , false , 0 , 5 ) {
2019-06-06 14:21:15 +02:00
auto input = INPUT_VARIABLE ( 0 ) ; // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW)
auto weights = INPUT_VARIABLE ( 1 ) ; // [kW, iC, oC] always
auto bias = block . width ( ) > 3 ? INPUT_VARIABLE ( 2 ) : nullptr ; // [oC]
auto gradO = block . width ( ) > 3 ? INPUT_VARIABLE ( 3 ) : INPUT_VARIABLE ( 2 ) ; // [bS, oW, oC] (NWC) or [bS, oC, oW] (NCW), epsilon_next
auto gradI = OUTPUT_VARIABLE ( 0 ) ; // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW), epsilon
auto gradW = OUTPUT_VARIABLE ( 1 ) ; // [kW, iC, oC] always
auto gradB = block . width ( ) > 3 ? OUTPUT_VARIABLE ( 2 ) : nullptr ; // [oC]
int kW = INT_ARG ( 0 ) > 0 ? INT_ARG ( 0 ) : static_cast < int > ( weights - > sizeAt ( 0 ) ) ; // filter(kernel) width
int sW = INT_ARG ( 1 ) ; // strides width
int pW = INT_ARG ( 2 ) ; // paddings width
2019-11-29 12:14:30 +01:00
int dW = INT_ARG ( 3 ) ; // dilations width
int paddingMode = INT_ARG ( 4 ) ; // 0-VALID, 1-SAME, 2-CAUSAL
int isNCW = block . getIArguments ( ) - > size ( ) > 5 ? ! INT_ARG ( 5 ) : 1 ; // INT_ARG(4): 1-NWC, 0-NCW
2019-06-06 14:21:15 +02:00
const int rank = 3 ;
REQUIRE_TRUE ( input - > rankOf ( ) = = rank , 0 , " CUSTOM CONV1D_BP OP: rank of input array must be equal to %i, but got %i instead ! " , rank , input - > rankOf ( ) ) ;
REQUIRE_TRUE ( weights - > rankOf ( ) = = rank , 0 , " CUSTOM CONV1D_BP OP: rank of weights array must be equal to %i, but got %i instead ! " , rank , weights - > rankOf ( ) ) ;
REQUIRE_TRUE ( gradO - > rankOf ( ) = = rank , 0 , " CUSTOM CONV1D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead ! " , rank , gradO - > rankOf ( ) ) ;
int indIOioC , indIiW , indWoC ( 2 ) ;
if ( ! isNCW ) {
indIOioC = 2 ; indIiW = 1 ;
}
else {
indIOioC = 1 ; indIiW = 2 ;
}
const int bS = input - > sizeAt ( 0 ) ; // batch size
const int iW = input - > sizeAt ( indIiW ) ; // input width
const int iC = input - > sizeAt ( indIOioC ) ; // input channels
const int oC = weights - > sizeAt ( indWoC ) ; // output channels
int trueoH , trueoW ; // true output height, width
2019-11-29 12:14:30 +01:00
ConvolutionUtils : : calcOutSizePool2D ( trueoH , trueoW , 1 , kW , 1 , sW , 0 , pW , 1 , dW , 1 , iW , paddingMode ) ;
2019-06-06 14:21:15 +02:00
std : : string expectedGradOShape = ShapeUtils : : shapeAsString ( ShapeUtils : : composeShapeUsingDimsAndIdx ( { bS , oC , trueoW , 0 , indIOioC , indIiW } ) ) ;
std : : string expectedWeightsShape = ShapeUtils : : shapeAsString ( { kW , iC , oC } ) ;
REQUIRE_TRUE ( expectedGradOShape = = ShapeUtils : : shapeAsString ( gradO ) , 0 , " CUSTOM CONV1D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead ! " , expectedGradOShape . c_str ( ) , ShapeUtils : : shapeAsString ( gradO ) . c_str ( ) ) ;
REQUIRE_TRUE ( expectedWeightsShape = = ShapeUtils : : shapeAsString ( weights ) , 0 , " CUSTOM CONV1D_BP OP: wrong shape of weights array, expected is %s, but got %s instead ! " , expectedWeightsShape . c_str ( ) , ShapeUtils : : shapeAsString ( weights ) . c_str ( ) ) ;
if ( bias )
REQUIRE_TRUE ( bias - > rankOf ( ) < = 2 & & oC = = bias - > lengthOf ( ) , 0 , " CUSTOM CONV1D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , bias - > rankOf ( ) , bias - > lengthOf ( ) ) ;
std : : vector < Nd4jLong > reshapeForInput , reshapeForGradO ;
if ( ! isNCW ) {
reshapeForInput = { input - > sizeAt ( 0 ) , 1 , input - > sizeAt ( 1 ) , input - > sizeAt ( 2 ) } ; // [bS, iW, iC] -> [bS, 1, iW, iC]
reshapeForGradO = { gradO - > sizeAt ( 0 ) , 1 , gradO - > sizeAt ( 1 ) , gradO - > sizeAt ( 2 ) } ; // [bS, oW, oC] -> [bS, 1, oW, oC]
}
else {
reshapeForInput = { input - > sizeAt ( 0 ) , input - > sizeAt ( 1 ) , 1 , input - > sizeAt ( 2 ) } ; // [bS, iC, iW] -> [bS, iC, 1, iW]
reshapeForGradO = { gradO - > sizeAt ( 0 ) , gradO - > sizeAt ( 1 ) , 1 , gradO - > sizeAt ( 2 ) } ; // [bS, oC, oW] -> [bS, oC, 1, oW]
}
auto inputReshaped = input - > reshape ( input - > ordering ( ) , reshapeForInput ) ;
auto gradIReshaped = gradI - > reshape ( gradI - > ordering ( ) , reshapeForInput ) ;
auto gradOReshaped = gradO - > reshape ( gradO - > ordering ( ) , reshapeForGradO ) ;
auto weightsReshaped = weights - > reshape ( weights - > ordering ( ) , { 1 , weights - > sizeAt ( 0 ) , weights - > sizeAt ( 1 ) , weights - > sizeAt ( 2 ) } ) ; // [kW, iC, oC] -> [1, kW, iC, oC]
auto gradWReshaped = gradW - > reshape ( gradW - > ordering ( ) , { 1 , weights - > sizeAt ( 0 ) , weights - > sizeAt ( 1 ) , weights - > sizeAt ( 2 ) } ) ; // [kW, iC, oC] -> [1, kW, iC, oC]
2019-11-29 12:14:30 +01:00
nd4j : : ops : : conv2d_bp conv2dBP ;
const Nd4jStatus status = conv2dBP . execute ( { & inputReshaped , & weightsReshaped , bias , & gradOReshaped } , { & gradIReshaped , & gradWReshaped , gradB } , { } , { 1 , kW , 1 , sW , 0 , pW , 1 , dW , paddingMode , ! isNCW } , { } ) ;
if ( status ! = ND4J_STATUS_OK )
return status ;
// ConvolutionUtils::conv2dBP(block, &inputReshaped, &weightsReshaped, bias, &gradOReshaped, &gradIReshaped, &gradWReshaped, gradB, 1,kW, 1,sW, 0,pW, 1,dW, paddingMode, isNCW);
2019-06-06 14:21:15 +02:00
return Status : : OK ( ) ;
}
DECLARE_SHAPE_FN ( conv1d_bp ) {
auto inputShapeInfo = inputShape - > at ( 0 ) ; // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW)
auto weightsShapeInfo = inputShape - > at ( 1 ) ; // [kW, iC, oC] always
Nd4jLong * biasShapeInfo = block . width ( ) > 3 ? inputShape - > at ( 2 ) : nullptr ; // [oC]
Nd4jLong * gradOShapeInfo = block . width ( ) > 3 ? inputShape - > at ( 3 ) : inputShape - > at ( 2 ) ; // [bS, oW, oC] (NWC) or [bS, oC, oW] (NCW), epsilon_next
const int rank = 3 ;
REQUIRE_TRUE ( inputShapeInfo [ 0 ] = = rank , 0 , " CUSTOM CONV1D_BP OP: rank of input array must be equal to %i, but got %i instead ! " , rank , inputShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( weightsShapeInfo [ 0 ] = = rank , 0 , " CUSTOM CONV1D_BP OP: rank of weights array must be equal to %i, but got %i instead ! " , rank , weightsShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( gradOShapeInfo [ 0 ] = = rank , 0 , " CUSTOM CONV1D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead ! " , rank , gradOShapeInfo [ 0 ] ) ;
int kW = INT_ARG ( 0 ) > 0 ? INT_ARG ( 0 ) : static_cast < int > ( shape : : sizeAt ( weightsShapeInfo , 0 ) ) ; // filter(kernel) width
int sW = INT_ARG ( 1 ) ; // strides width
int pW = INT_ARG ( 2 ) ; // paddings width
2019-11-29 12:14:30 +01:00
int dW = INT_ARG ( 3 ) ; // dilations width
int paddingMode = INT_ARG ( 4 ) ; // 0-VALID, 1-SAME
int isNCW = block . getIArguments ( ) - > size ( ) > 5 ? ! INT_ARG ( 5 ) : 1 ; // INT_ARG(4): 1-NWC, 0-NCW
2019-06-06 14:21:15 +02:00
int indIOioC , indIiW , indWoC ( 2 ) ;
if ( ! isNCW ) {
indIOioC = 2 ; indIiW = 1 ;
}
else {
indIOioC = 1 ; indIiW = 2 ;
}
const int bS = inputShapeInfo [ 1 ] ; // batch size
const int iW = inputShapeInfo [ indIiW + 1 ] ; // input width
const int iC = inputShapeInfo [ indIOioC + 1 ] ; // input channels
const int oC = weightsShapeInfo [ indWoC + 1 ] ; // output channels
int trueoH , trueoW ; // true output height, width
2019-11-29 12:14:30 +01:00
ConvolutionUtils : : calcOutSizePool2D ( trueoH , trueoW , 1 , kW , 1 , sW , 0 , pW , 1 , dW , 1 , iW , paddingMode ) ;
2019-06-06 14:21:15 +02:00
std : : string expectedGradOShape = ShapeUtils : : shapeAsString ( ShapeUtils : : composeShapeUsingDimsAndIdx ( { bS , oC , trueoW , 0 , indIOioC , indIiW } ) ) ;
std : : string expectedWeightsShape = ShapeUtils : : shapeAsString ( { kW , iC , oC } ) ;
REQUIRE_TRUE ( expectedGradOShape = = ShapeUtils : : shapeAsString ( gradOShapeInfo ) , 0 , " CUSTOM CONV1D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead ! " , expectedGradOShape . c_str ( ) , ShapeUtils : : shapeAsString ( gradOShapeInfo ) . c_str ( ) ) ;
REQUIRE_TRUE ( expectedWeightsShape = = ShapeUtils : : shapeAsString ( weightsShapeInfo ) , 0 , " CUSTOM CONV1D_BP OP: wrong shape of weights array, expected is %s, but got %s instead ! " , expectedWeightsShape . c_str ( ) , ShapeUtils : : shapeAsString ( weightsShapeInfo ) . c_str ( ) ) ;
if ( biasShapeInfo )
REQUIRE_TRUE ( biasShapeInfo [ 0 ] < = 2 & & oC = = shape : : length ( biasShapeInfo ) , 0 , " CUSTOM CONV1D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , biasShapeInfo [ 0 ] , shape : : length ( biasShapeInfo ) ) ;
auto gradIshapeInfo = ShapeBuilders : : copyShapeInfoAndType ( inputShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
auto gradWshapeInfo = ShapeBuilders : : copyShapeInfoAndType ( weightsShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
if ( biasShapeInfo ) {
auto gradBshapeInfo = ShapeBuilders : : copyShapeInfoAndType ( biasShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
return SHAPELIST ( CONSTANT ( gradIshapeInfo ) , CONSTANT ( gradWshapeInfo ) , CONSTANT ( gradBshapeInfo ) ) ;
}
return SHAPELIST ( CONSTANT ( gradIshapeInfo ) , CONSTANT ( gradWshapeInfo ) ) ;
}
DECLARE_TYPES ( conv1d_bp ) {
getOpDescriptor ( )
- > setAllowedInputTypes ( 0 , { ALL_FLOATS , ALL_INTS , DataType : : QINT8 , DataType : : QINT16 } )
- > setAllowedInputTypes ( 1 , { ALL_FLOATS } )
- > setAllowedInputTypes ( 2 , { ALL_FLOATS } )
- > setAllowedInputTypes ( 3 , { ALL_FLOATS } )
- > setAllowedOutputTypes ( 0 , { ALL_FLOATS } )
- > setAllowedOutputTypes ( 1 , { ALL_FLOATS } ) ;
}
}
}
# endif