2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by raver119 on 31.10.2017.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "testlayers.h"
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
#include <NDArray.h>
|
|
|
|
#include <NativeOps.h>
|
|
|
|
|
|
|
|
using namespace nd4j;
|
|
|
|
using namespace nd4j::graph;
|
|
|
|
|
|
|
|
class IndexingTests : public testing::Test {
|
|
|
|
public:
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, StridedSlice_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {3, 3, 3});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 1, 3});
|
|
|
|
exp.p(0, 25.f);
|
|
|
|
exp.p(1, 26.f);
|
|
|
|
exp.p(2, 27.f);
|
|
|
|
|
|
|
|
x.linspace(1);
|
|
|
|
auto begin = NDArrayFactory::create<int>({2,2, 0});
|
|
|
|
auto end = NDArrayFactory::create<int>({3,3,3});
|
|
|
|
auto strides = NDArrayFactory::create<int>({1,1,1});
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::strided_slice op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &begin, &end, &strides}, {}, {0,0,0,0,0}); //, 2,2,0, 3,3,3, 1,1,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, StridedSlice_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5, 5});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 3, 3}, {86.f, 87.f, 88.f, 91.f, 92.f, 93.f, 96.f, 97.f, 98.f, 111.f, 112.f, 113.f, 116.f, 117.f, 118.f, 121.f, 122.f, 123.f});
|
|
|
|
|
|
|
|
x.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::strided_slice op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x}, {}, {0,0,0,0,0, 3,2,0, 5,5,3, 1,1,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, StridedSlice_3) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5, 5});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 3, 2}, {86.f, 88.f, 91.f, 93.f, 96.f, 98.f, 111.f, 113.f, 116.f, 118.f, 121.f, 123.f});
|
|
|
|
|
|
|
|
x.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::strided_slice op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x}, {}, {0,0,0,0,0, 3,2,0, 5,5,3, 1,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, SimpleSlice_1) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3, 2, 3}, {1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 1, 3});
|
|
|
|
exp.p(0, 3.0f);
|
|
|
|
exp.p(1, 3.0f);
|
|
|
|
exp.p(2, 3.0f);
|
|
|
|
|
|
|
|
nd4j::ops::slice op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input}, {}, {1,0,0, 1,1,3});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, SimpleSlice_2) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3, 2, 3}, {1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 2, 3});
|
|
|
|
exp.p(0, 3.0f);
|
|
|
|
exp.p(1, 3.0f);
|
|
|
|
exp.p(2, 3.0f);
|
|
|
|
exp.p(3, 4.0f);
|
|
|
|
exp.p(4, 4.0f);
|
|
|
|
exp.p(5, 4.0f);
|
|
|
|
|
|
|
|
nd4j::ops::slice op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input}, {}, {1,0,0, 1,2,3});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, SimpleSlice_3) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3, 2, 3}, {1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 1, 3});
|
|
|
|
exp.p(0, 3.0f);
|
|
|
|
exp.p(1, 3.0f);
|
|
|
|
exp.p(2, 3.0f);
|
|
|
|
exp.p(3, 5.0f);
|
|
|
|
exp.p(4, 5.0f);
|
|
|
|
exp.p(5, 5.0f);
|
|
|
|
|
|
|
|
nd4j::ops::slice op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input}, {}, {1,0,0, 2,1,3});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, SimpleSlice_4) {
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 2, 3}, {1.0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6});
|
|
|
|
auto start = NDArrayFactory::create<double>('c', {3}, {1.0, 0.0, 0.0});
|
|
|
|
auto stop = NDArrayFactory::create<double>('c', {3}, {2.0, 1.0, 3.0});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {2, 1, 3}, {3.0, 3.0, 3.0, 5.0, 5.0, 5.0});
|
|
|
|
|
|
|
|
nd4j::ops::slice op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input, &start, &stop});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, MaskedSlice_0) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 5});
|
|
|
|
auto tads = matrix.allTensorsAlongDimension({1});
|
2019-12-20 20:35:39 +01:00
|
|
|
for (int e = 0; e < tads.size(); e++) {
|
|
|
|
tads.at(e)->assign((float) (e+1));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 5});
|
|
|
|
exp.assign(2.0f);
|
|
|
|
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&matrix}, {}, {0,0,0,0,0, 1, 2, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
// z->printShapeInfo("z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, MaskedSlice_00) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 5});
|
|
|
|
auto tads = matrix.allTensorsAlongDimension({1});
|
2019-12-20 20:35:39 +01:00
|
|
|
for (int e = 0; e < tads.size(); e++) {
|
|
|
|
tads.at(e)->assign((float) (e+1));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 2}, {2, 2});
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&matrix}, {}, {0,0,0,0,0, 1, 1, 2, 3, 1, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, MaskedSlice_1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 5});
|
|
|
|
auto tads = matrix.allTensorsAlongDimension({1});
|
2019-12-20 20:35:39 +01:00
|
|
|
for (int e = 0; e < tads.size(); e++) {
|
|
|
|
tads.at(e)->assign((float) (e+1));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5});
|
|
|
|
exp.assign(2.0f);
|
|
|
|
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&matrix}, {}, {0,0,0,0,1, 1, 2, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
// z->printShapeInfo("z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, MaskedSlice_2) {
|
|
|
|
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 3, 3}, {1.f, 1.2f, 1.3f, 2.f, 2.2f, 2.3f, 3.f, 3.2f, 3.3f, 4.f, 4.2f, 4.3f, 5.f, 5.2f, 5.3f, 6.f, 6.2f, 6.3f, 7.f, 7.2f, 7.3f, 8.f, 8.2f, 8.3f, 9.f, 9.2f, 9.3f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 3}, {4.000000f, 4.200000f, 4.300000f, 5.000000f, 5.200000f, 5.300000f, 6.000000f, 6.200000f, 6.300000f});
|
|
|
|
|
|
|
|
// output = tf.strided_slice(a, [1, 0, 0], [3, 3, 3], shrink_axis_mask=5)
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&matrix}, {}, {0,0,0,0,1, 1, 0, 0, 3, 3, 3, 1, 1, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, MaskedSlice_3) {
|
|
|
|
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 3, 3}, {1.f, 1.2f, 1.3f, 2.f, 2.2f, 2.3f, 3.f, 3.2f, 3.3f, 4.f, 4.2f, 4.3f, 5.f, 5.2f, 5.3f, 6.f, 6.2f, 6.3f, 7.f, 7.2f, 7.3f, 8.f, 8.2f, 8.3f, 9.f, 9.2f, 9.3f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 3}, { 4.f, 4.2f, 4.3f, 7.f, 7.2f, 7.3f});
|
|
|
|
|
|
|
|
// output = tf.strided_slice(a, [1, 0, 0], [3, 3, 3], shrink_axis_mask=5)
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&matrix}, {}, {0,0,0,0,2, 1, 0, 0, 3, 3, 3, 1, 1, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, MaskedSlice_4) {
|
|
|
|
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 3, 3}, {1.f, 1.2f, 1.3f, 2.f, 2.2f, 2.3f, 3.f, 3.2f, 3.3f, 4.f, 4.2f, 4.3f, 5.f, 5.2f, 5.3f, 6.f, 6.2f, 6.3f, 7.f, 7.2f, 7.3f, 8.f, 8.2f, 8.3f, 9.f, 9.2f, 9.3f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3}, { 4.f, 4.2f, 4.3f});
|
|
|
|
|
|
|
|
// output = tf.strided_slice(a, [1, 0, 0], [3, 3, 3], shrink_axis_mask=5)
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&matrix}, {}, {0,0,0,0, 3, 1, 0, 0, 3, 3, 3, 1, 1, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, Live_Slice_1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 3, 3}, {1.f, 1.2f, 1.3f, 2.f, 2.2f, 2.3f, 3.f, 3.2f, 3.3f, 4.f, 4.2f, 4.3f, 5.f, 5.2f, 5.3f, 6.f, 6.2f, 6.3f, 7.f, 7.2f, 7.3f, 8.f, 8.2f, 8.3f, 9.f, 9.2f, 9.3f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3}, { 4.f, 4.2f, 4.3f});
|
|
|
|
|
|
|
|
auto begin = NDArrayFactory::create<float>('c', {3}, {1.0f, 0.0f, 0.0f});
|
|
|
|
auto end = NDArrayFactory::create<float>('c', {3}, {3.0f, 3.0f, 3.0f});
|
|
|
|
auto stride = NDArrayFactory::create<float>('c', {3}, {1.0f, 1.0f, 1.0f});
|
|
|
|
|
|
|
|
// output = tf.strided_slice(a, [1, 0, 0], [3, 3, 3], shrink_axis_mask=5)
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&matrix, &begin, &end, &stride}, {}, {0,0,0,0,3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
// z->printShapeInfo("z shape");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, Test_StridedSlice_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 2}, {5.f, 2.f});
|
|
|
|
auto a = NDArrayFactory::create<float>('c', {1}, {0.f});
|
|
|
|
auto b = NDArrayFactory::create<float>('c', {1}, {1.f});
|
|
|
|
auto c = NDArrayFactory::create<float>('c', {1}, {1.f});
|
|
|
|
auto exp = NDArrayFactory::create<float>({5.0f, 2});
|
|
|
|
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &a, &b, &c}, {}, {0, 0, 0, 0, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, Test_StridedSlice_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 3, 4, 5, 6});
|
|
|
|
auto a = NDArrayFactory::create<float>('c', {2}, {1, 1});
|
|
|
|
auto b = NDArrayFactory::create<float>('c', {2}, {2, 2});
|
|
|
|
auto c = NDArrayFactory::create<float>('c', {2}, {1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1}, {5.0});
|
|
|
|
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &a, &b, &c}, {}, {0, 0, 0, 0, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
// z->printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, Test_StridedSlice_3) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 3, 4, 5, 6});
|
|
|
|
auto a = NDArrayFactory::create<float>('c', {2}, {1, 2});
|
|
|
|
auto b = NDArrayFactory::create<float>('c', {2}, {2, 3});
|
|
|
|
auto c = NDArrayFactory::create<float>('c', {2}, {1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1}, {6.0});
|
|
|
|
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &a, &b, &c}, {}, {0, 0, 0, 0, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, Test_StridedSlice_4) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 2}, {5, 2});
|
|
|
|
auto a = NDArrayFactory::create<float>('c', {1}, {0.});
|
|
|
|
auto b = NDArrayFactory::create<float>('c', {1}, {1});
|
|
|
|
auto c = NDArrayFactory::create<float>('c', {1}, {1});
|
|
|
|
auto exp = NDArrayFactory::create<float>({5.0f, 2});
|
|
|
|
|
|
|
|
nd4j::ops::strided_slice op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &a, &b, &c}, {}, {0, 0, 0, 0, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
// auto result = op.execute({&x, &a, &b, &c}, {}, {0, 0, 0, 0, 1, 0, 1, 1});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
//z->printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(IndexingTests, Test_Subarray_Strided_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 2}, {1, 3, 4, 6, 7, 9});
|
|
|
|
auto sub = x({0,0,0, 0,3,2}, true, true);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(sub));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(sub));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
TEST_F(IndexingTests, MaskedSlice_5) {
|
|
|
|
|
|
|
|
auto matrix('c', {3, 3, 3}, {1.f, 1.2f, 1.3f, 2.f, 2.2f, 2.3f, 3.f, 3.2f, 3.3f, 4.f, 4.2f, 4.3f, 5.f, 5.2f, 5.3f, 6.f, 6.2f, 6.3f, 7.f, 7.2f, 7.3f, 8.f, 8.2f, 8.3f, 9.f, 9.2f, 9.3f});
|
|
|
|
auto exp('c', {2, 3}, { 4.f, 4.2f, 4.3f, 7.f, 7.2f, 7.3f});
|
|
|
|
|
|
|
|
// output = tf.strided_slice(a, [1, 0, 0], [3, 3, 3], shrink_axis_mask=5)
|
|
|
|
nd4j::ops::strided_slice<float> op;
|
|
|
|
auto result = op.execute({&matrix}, {}, {0,0,0,0,2, 1, 0, 0, 3, 3, 3});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
*/
|