2020-01-22 11:59:36 +01:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2019-2020 Konduit K.K.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author George A. Shulinok <sgazeos@gmail.com>
|
|
|
|
//
|
|
|
|
#include <ops/declarable/helpers/qr.h>
|
|
|
|
#include <helpers/MmulHelper.h>
|
|
|
|
#include <execution/Threads.h>
|
|
|
|
#include <NDArrayFactory.h>
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
NDArray matrixMinor(NDArray& in, Nd4jLong col) {
|
|
|
|
NDArray m = in.ulike();
|
|
|
|
m.setIdentity();
|
|
|
|
m({col, m.rows(), col, m.columns()}).assign(in({col, m.rows(), col, m.columns()}));
|
|
|
|
|
|
|
|
return m;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* m = I - v v^T */
|
|
|
|
template <typename T>
|
|
|
|
NDArray vmul(NDArray const& v, int n)
|
|
|
|
{
|
|
|
|
NDArray res('c', {n,n}, v.dataType()); // x = matrix_new(n, n);
|
|
|
|
T const* vBuf = v.getDataBuffer()->primaryAsT<T>();
|
|
|
|
T* resBuf = res.dataBuffer()->primaryAsT<T>();
|
|
|
|
auto interloop = PRAGMA_THREADS_FOR_2D {
|
2020-02-26 19:12:19 +01:00
|
|
|
for (auto i = start_x; i < n; i += inc_x)
|
|
|
|
for (auto j = start_y; j < n; j += inc_y)
|
2020-01-22 11:59:36 +01:00
|
|
|
resBuf[i * n + j] = -2 * vBuf[i] * vBuf[j] + (i == j ? T(1) : T(0));
|
|
|
|
};
|
|
|
|
|
|
|
|
samediff::Threads::parallel_for(interloop, 0, n, 1, 0, n, 1);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void qrSingle(NDArray* matrix, NDArray* Q, NDArray* R, bool const fullMatricies) {
|
|
|
|
Nd4jLong M = matrix->sizeAt(-2);
|
|
|
|
Nd4jLong N = matrix->sizeAt(-1);
|
|
|
|
auto resQ = fullMatricies?Q->ulike():NDArrayFactory::create<T>(matrix->ordering(), {M,M}, Q->getContext());
|
|
|
|
auto resR = fullMatricies?R->ulike():matrix->ulike();
|
|
|
|
std::vector<NDArray> q(M);
|
|
|
|
|
|
|
|
NDArray z = *matrix;
|
|
|
|
NDArray e('c', {M}, DataTypeUtils::fromT<T>()); // two internal buffers and scalar for squared norm
|
|
|
|
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong k = 0; k < N && k < M - 1; k++) { // loop for columns, but not further then row number
|
2020-01-22 11:59:36 +01:00
|
|
|
e.nullify();
|
|
|
|
z = matrixMinor<T>(z, k); // minor computing for current column with given matrix z (initally is a input matrix)
|
|
|
|
// z.printIndexedBuffer("Minor!!!");
|
|
|
|
|
|
|
|
auto currentColumn = z({0, 0, k, k + 1}); // retrieve k column from z to x buffer
|
|
|
|
auto norm = currentColumn.reduceAlongDimension(reduce::Norm2, {0});
|
|
|
|
if (matrix->t<T>(k,k) > T(0.f)) // negate on positive matrix diagonal element
|
|
|
|
norm *= T(-1.f);//.applyTransform(transform::Neg, nullptr, nullptr); //t<T>(0) = -norm.t<T>(0);
|
|
|
|
//e.t<T>(k) = T(1.f); // e - is filled by 0 vector except diagonal element (filled by 1)
|
|
|
|
//auto tE = e;
|
|
|
|
//tE *= norm;
|
|
|
|
// norm.printIndexedBuffer("Norm!!!");
|
|
|
|
e.p(k, norm);
|
|
|
|
e += currentColumn;// e += tE; // e[i] = x[i] + a * e[i] for each i from 0 to n - 1
|
|
|
|
auto normE = e.reduceAlongDimension(reduce::Norm2, {0});
|
|
|
|
e /= normE;
|
|
|
|
q[k] = vmul<T>(e, M);
|
|
|
|
auto qQ = z.ulike();
|
|
|
|
MmulHelper::matmul(&q[k], &z, &qQ, false, false);
|
|
|
|
z = std::move(qQ);
|
|
|
|
}
|
|
|
|
resQ.assign(q[0]); //
|
|
|
|
// MmulHelper::matmul(&q[0], matrix, &resR, false, false);
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong i = 1; i < N && i < M - 1; i++) {
|
2020-01-22 11:59:36 +01:00
|
|
|
auto tempResQ = resQ;
|
|
|
|
MmulHelper::matmul(&q[i], &resQ, &tempResQ, false, false); // use mmulMxM?
|
|
|
|
resQ = std::move(tempResQ);
|
|
|
|
}
|
|
|
|
MmulHelper::matmul(&resQ, matrix, &resR, false, false);
|
|
|
|
// resR *= -1.f;
|
|
|
|
resQ.transposei();
|
|
|
|
if (fullMatricies) {
|
|
|
|
Q->assign(resQ);
|
|
|
|
R->assign(resR);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
Q->assign(resQ({0,0, 0, N}));
|
|
|
|
R->assign(resR({0,N, 0, 0}));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void qr_(NDArray* input, NDArray* outputQ, NDArray* outputR, bool const fullMatricies) {
|
|
|
|
Nd4jLong lastDim = input->rankOf() - 1;
|
|
|
|
Nd4jLong preLastDim = input->rankOf() - 2;
|
|
|
|
ResultSet listOutQ(outputQ->allTensorsAlongDimension({(int)preLastDim, (int)lastDim}));
|
|
|
|
ResultSet listOutR(outputR->allTensorsAlongDimension({(int)preLastDim, (int)lastDim}));
|
|
|
|
ResultSet listInput(input->allTensorsAlongDimension({(int)preLastDim, (int)lastDim}));
|
|
|
|
auto batching = PRAGMA_THREADS_FOR {
|
2020-02-20 09:43:26 +01:00
|
|
|
for (auto batch = start; batch < stop; batch++) {
|
2020-01-22 11:59:36 +01:00
|
|
|
//qr here
|
|
|
|
qrSingle<T>(listInput.at(batch), listOutQ.at(batch), listOutR.at(batch), fullMatricies);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
samediff::Threads::parallel_tad(batching, 0, listOutQ.size(), 1);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void qr(nd4j::LaunchContext* context, NDArray* input, NDArray* outputQ, NDArray* outputR, bool const fullMatricies) {
|
|
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), qr_, (input, outputQ, outputR, fullMatricies), FLOAT_TYPES);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|