cavis/libnd4j/include/ops/declarable/helpers/cpu/qr.cpp

134 lines
5.3 KiB
C++
Raw Normal View History

Shugeo qr (#153) * Added qr op implementation. Initial version. * Fixed doc for qr op. Signed-off-by: shugeo <sgazeos@gmail.com> * Implementation of QR decomposition. CPU platform version. * Added a pair of tests for qr op testing. Signed-off-by: shugeo <sgazeos@gmail.com> * QR implementation. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected norm using. * Properly calculated intermediate results with QR decomposition. * Another step to implement QR algorithm by householder. * Cpu implementatio for QR decomposition. The first working edition. * Corrected test to QR decomposition. * Added tad multithreading with QR implementation. * Finished cpu implementation for QR decomposition helpers. * Refactored tests and improved multithreading. * Refactored QR cpu implementation and update cuda implementation helpers. * Cuda QR helper implementation. The first working edition. * Eliminated waste prints. * Restore multithreading with cuda implementation. * Ops names corrected * Refactored qr op helpers to optimize. Signed-off-by: shugeo <sgazeos@gmail.com> * Eliminated waste manual ticking. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored memory allocation to avoid waste memory usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored matrixMinor method both for cuda and cpu platforms. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored method of vmul to use raw buffers instead type conversion. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored temporary array of matricies. Signed-off-by: shugeo <sgazeos@gmail.com> Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> Co-authored-by: raver119 <raver119@gmail.com>
2020-01-22 11:59:36 +01:00
/*******************************************************************************
* Copyright (c) 2019-2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author George A. Shulinok <sgazeos@gmail.com>
//
#include <ops/declarable/helpers/qr.h>
#include <helpers/MmulHelper.h>
#include <execution/Threads.h>
#include <NDArrayFactory.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
NDArray matrixMinor(NDArray& in, Nd4jLong col) {
NDArray m = in.ulike();
m.setIdentity();
m({col, m.rows(), col, m.columns()}).assign(in({col, m.rows(), col, m.columns()}));
return m;
}
/* m = I - v v^T */
template <typename T>
NDArray vmul(NDArray const& v, int n)
{
NDArray res('c', {n,n}, v.dataType()); // x = matrix_new(n, n);
T const* vBuf = v.getDataBuffer()->primaryAsT<T>();
T* resBuf = res.dataBuffer()->primaryAsT<T>();
auto interloop = PRAGMA_THREADS_FOR_2D {
for (auto i = start_x; i < n; i += inc_x)
for (auto j = start_y; j < n; j += inc_y)
Shugeo qr (#153) * Added qr op implementation. Initial version. * Fixed doc for qr op. Signed-off-by: shugeo <sgazeos@gmail.com> * Implementation of QR decomposition. CPU platform version. * Added a pair of tests for qr op testing. Signed-off-by: shugeo <sgazeos@gmail.com> * QR implementation. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected norm using. * Properly calculated intermediate results with QR decomposition. * Another step to implement QR algorithm by householder. * Cpu implementatio for QR decomposition. The first working edition. * Corrected test to QR decomposition. * Added tad multithreading with QR implementation. * Finished cpu implementation for QR decomposition helpers. * Refactored tests and improved multithreading. * Refactored QR cpu implementation and update cuda implementation helpers. * Cuda QR helper implementation. The first working edition. * Eliminated waste prints. * Restore multithreading with cuda implementation. * Ops names corrected * Refactored qr op helpers to optimize. Signed-off-by: shugeo <sgazeos@gmail.com> * Eliminated waste manual ticking. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored memory allocation to avoid waste memory usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored matrixMinor method both for cuda and cpu platforms. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored method of vmul to use raw buffers instead type conversion. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored temporary array of matricies. Signed-off-by: shugeo <sgazeos@gmail.com> Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> Co-authored-by: raver119 <raver119@gmail.com>
2020-01-22 11:59:36 +01:00
resBuf[i * n + j] = -2 * vBuf[i] * vBuf[j] + (i == j ? T(1) : T(0));
};
samediff::Threads::parallel_for(interloop, 0, n, 1, 0, n, 1);
return res;
}
template <typename T>
void qrSingle(NDArray* matrix, NDArray* Q, NDArray* R, bool const fullMatricies) {
Nd4jLong M = matrix->sizeAt(-2);
Nd4jLong N = matrix->sizeAt(-1);
auto resQ = fullMatricies?Q->ulike():NDArrayFactory::create<T>(matrix->ordering(), {M,M}, Q->getContext());
auto resR = fullMatricies?R->ulike():matrix->ulike();
std::vector<NDArray> q(M);
NDArray z = *matrix;
NDArray e('c', {M}, DataTypeUtils::fromT<T>()); // two internal buffers and scalar for squared norm
for (Nd4jLong k = 0; k < N && k < M - 1; k++) { // loop for columns, but not further then row number
Shugeo qr (#153) * Added qr op implementation. Initial version. * Fixed doc for qr op. Signed-off-by: shugeo <sgazeos@gmail.com> * Implementation of QR decomposition. CPU platform version. * Added a pair of tests for qr op testing. Signed-off-by: shugeo <sgazeos@gmail.com> * QR implementation. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected norm using. * Properly calculated intermediate results with QR decomposition. * Another step to implement QR algorithm by householder. * Cpu implementatio for QR decomposition. The first working edition. * Corrected test to QR decomposition. * Added tad multithreading with QR implementation. * Finished cpu implementation for QR decomposition helpers. * Refactored tests and improved multithreading. * Refactored QR cpu implementation and update cuda implementation helpers. * Cuda QR helper implementation. The first working edition. * Eliminated waste prints. * Restore multithreading with cuda implementation. * Ops names corrected * Refactored qr op helpers to optimize. Signed-off-by: shugeo <sgazeos@gmail.com> * Eliminated waste manual ticking. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored memory allocation to avoid waste memory usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored matrixMinor method both for cuda and cpu platforms. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored method of vmul to use raw buffers instead type conversion. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored temporary array of matricies. Signed-off-by: shugeo <sgazeos@gmail.com> Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> Co-authored-by: raver119 <raver119@gmail.com>
2020-01-22 11:59:36 +01:00
e.nullify();
z = matrixMinor<T>(z, k); // minor computing for current column with given matrix z (initally is a input matrix)
// z.printIndexedBuffer("Minor!!!");
auto currentColumn = z({0, 0, k, k + 1}); // retrieve k column from z to x buffer
auto norm = currentColumn.reduceAlongDimension(reduce::Norm2, {0});
if (matrix->t<T>(k,k) > T(0.f)) // negate on positive matrix diagonal element
norm *= T(-1.f);//.applyTransform(transform::Neg, nullptr, nullptr); //t<T>(0) = -norm.t<T>(0);
//e.t<T>(k) = T(1.f); // e - is filled by 0 vector except diagonal element (filled by 1)
//auto tE = e;
//tE *= norm;
// norm.printIndexedBuffer("Norm!!!");
e.p(k, norm);
e += currentColumn;// e += tE; // e[i] = x[i] + a * e[i] for each i from 0 to n - 1
auto normE = e.reduceAlongDimension(reduce::Norm2, {0});
e /= normE;
q[k] = vmul<T>(e, M);
auto qQ = z.ulike();
MmulHelper::matmul(&q[k], &z, &qQ, false, false);
z = std::move(qQ);
}
resQ.assign(q[0]); //
// MmulHelper::matmul(&q[0], matrix, &resR, false, false);
for (Nd4jLong i = 1; i < N && i < M - 1; i++) {
Shugeo qr (#153) * Added qr op implementation. Initial version. * Fixed doc for qr op. Signed-off-by: shugeo <sgazeos@gmail.com> * Implementation of QR decomposition. CPU platform version. * Added a pair of tests for qr op testing. Signed-off-by: shugeo <sgazeos@gmail.com> * QR implementation. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected norm using. * Properly calculated intermediate results with QR decomposition. * Another step to implement QR algorithm by householder. * Cpu implementatio for QR decomposition. The first working edition. * Corrected test to QR decomposition. * Added tad multithreading with QR implementation. * Finished cpu implementation for QR decomposition helpers. * Refactored tests and improved multithreading. * Refactored QR cpu implementation and update cuda implementation helpers. * Cuda QR helper implementation. The first working edition. * Eliminated waste prints. * Restore multithreading with cuda implementation. * Ops names corrected * Refactored qr op helpers to optimize. Signed-off-by: shugeo <sgazeos@gmail.com> * Eliminated waste manual ticking. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored memory allocation to avoid waste memory usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored matrixMinor method both for cuda and cpu platforms. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored method of vmul to use raw buffers instead type conversion. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored temporary array of matricies. Signed-off-by: shugeo <sgazeos@gmail.com> Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> Co-authored-by: raver119 <raver119@gmail.com>
2020-01-22 11:59:36 +01:00
auto tempResQ = resQ;
MmulHelper::matmul(&q[i], &resQ, &tempResQ, false, false); // use mmulMxM?
resQ = std::move(tempResQ);
}
MmulHelper::matmul(&resQ, matrix, &resR, false, false);
// resR *= -1.f;
resQ.transposei();
if (fullMatricies) {
Q->assign(resQ);
R->assign(resR);
}
else {
Q->assign(resQ({0,0, 0, N}));
R->assign(resR({0,N, 0, 0}));
}
}
template <typename T>
void qr_(NDArray* input, NDArray* outputQ, NDArray* outputR, bool const fullMatricies) {
Nd4jLong lastDim = input->rankOf() - 1;
Nd4jLong preLastDim = input->rankOf() - 2;
ResultSet listOutQ(outputQ->allTensorsAlongDimension({(int)preLastDim, (int)lastDim}));
ResultSet listOutR(outputR->allTensorsAlongDimension({(int)preLastDim, (int)lastDim}));
ResultSet listInput(input->allTensorsAlongDimension({(int)preLastDim, (int)lastDim}));
auto batching = PRAGMA_THREADS_FOR {
for (auto batch = start; batch < stop; batch++) {
Shugeo qr (#153) * Added qr op implementation. Initial version. * Fixed doc for qr op. Signed-off-by: shugeo <sgazeos@gmail.com> * Implementation of QR decomposition. CPU platform version. * Added a pair of tests for qr op testing. Signed-off-by: shugeo <sgazeos@gmail.com> * QR implementation. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected norm using. * Properly calculated intermediate results with QR decomposition. * Another step to implement QR algorithm by householder. * Cpu implementatio for QR decomposition. The first working edition. * Corrected test to QR decomposition. * Added tad multithreading with QR implementation. * Finished cpu implementation for QR decomposition helpers. * Refactored tests and improved multithreading. * Refactored QR cpu implementation and update cuda implementation helpers. * Cuda QR helper implementation. The first working edition. * Eliminated waste prints. * Restore multithreading with cuda implementation. * Ops names corrected * Refactored qr op helpers to optimize. Signed-off-by: shugeo <sgazeos@gmail.com> * Eliminated waste manual ticking. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored memory allocation to avoid waste memory usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored matrixMinor method both for cuda and cpu platforms. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored method of vmul to use raw buffers instead type conversion. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored temporary array of matricies. Signed-off-by: shugeo <sgazeos@gmail.com> Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> Co-authored-by: raver119 <raver119@gmail.com>
2020-01-22 11:59:36 +01:00
//qr here
qrSingle<T>(listInput.at(batch), listOutQ.at(batch), listOutR.at(batch), fullMatricies);
}
};
samediff::Threads::parallel_tad(batching, 0, listOutQ.size(), 1);
}
void qr(nd4j::LaunchContext* context, NDArray* input, NDArray* outputQ, NDArray* outputR, bool const fullMatricies) {
BUILD_SINGLE_SELECTOR(input->dataType(), qr_, (input, outputQ, outputR, fullMatricies), FLOAT_TYPES);
}
}
}
}