159 lines
5.6 KiB
C
159 lines
5.6 KiB
C
|
/*******************************************************************************
|
||
|
* Copyright (c) 2019 Konduit K.K.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author raver119@gmail.com
|
||
|
//
|
||
|
|
||
|
#ifndef SD_CUDNNUTILS_H
|
||
|
#define SD_CUDNNUTILS_H
|
||
|
|
||
|
#include <ops/declarable/PlatformHelper.h>
|
||
|
#include <ops/declarable/OpRegistrator.h>
|
||
|
#include <platform_boilerplate.h>
|
||
|
#include <exceptions/cuda_exception.h>
|
||
|
#include <exceptions/datatype_exception.h>
|
||
|
#include <dll.h>
|
||
|
|
||
|
#include <cudnn.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
namespace platforms {
|
||
|
|
||
|
DECLARE_PLATFORM(conv2d, ENGINE_CUDA);
|
||
|
DECLARE_PLATFORM(conv2d_bp, ENGINE_CUDA);
|
||
|
|
||
|
DECLARE_PLATFORM(conv3dnew, ENGINE_CUDA);
|
||
|
DECLARE_PLATFORM(conv3dnew_bp, ENGINE_CUDA);
|
||
|
|
||
|
DECLARE_PLATFORM(depthwise_conv2d, ENGINE_CUDA);
|
||
|
DECLARE_PLATFORM(depthwise_conv2d_bp, ENGINE_CUDA);
|
||
|
|
||
|
DECLARE_PLATFORM(batchnorm, ENGINE_CUDA);
|
||
|
DECLARE_PLATFORM(batchnorm_bp, ENGINE_CUDA);
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////
|
||
|
FORCEINLINE cudnnDataType_t cudnnDataType(nd4j::DataType dataType) {
|
||
|
switch (dataType) {
|
||
|
case nd4j::DataType::FLOAT32:
|
||
|
return CUDNN_DATA_FLOAT;
|
||
|
case nd4j::DataType::DOUBLE:
|
||
|
return CUDNN_DATA_DOUBLE;
|
||
|
case nd4j::DataType::HALF:
|
||
|
return CUDNN_DATA_HALF;
|
||
|
case nd4j::DataType::INT32:
|
||
|
return CUDNN_DATA_INT32;
|
||
|
case nd4j::DataType::INT8:
|
||
|
return CUDNN_DATA_INT8;
|
||
|
default:
|
||
|
throw datatype_exception::build("Unsupported data type", dataType);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////
|
||
|
FORCEINLINE void checkConv2dCUDNNPadAsymmetric(NDArray* &input, NDArray* &gradI,
|
||
|
const int iH, const int iW,
|
||
|
const int oH, const int oW,
|
||
|
const int kH, const int kW,
|
||
|
const int sH, const int sW,
|
||
|
const int pH, const int pW,
|
||
|
const int dH, const int dW,
|
||
|
const bool isNCHW) {
|
||
|
|
||
|
const auto pHsum = ((oH - 1) * sH + ((kH - 1) * dH + 1) - iH);
|
||
|
const auto pWsum = ((oW - 1) * sW + ((kW - 1) * dW + 1) - iW);
|
||
|
|
||
|
const bool isPHasymm = pH != (pHsum - pH);
|
||
|
const bool isPWasymm = pW != (pWsum - pW);
|
||
|
|
||
|
if(!isPHasymm && !isPWasymm)
|
||
|
return;
|
||
|
|
||
|
std::vector<Nd4jLong> newShape = input->getShapeAsVector();
|
||
|
|
||
|
const int iHposition = isNCHW ? 2 : 1;
|
||
|
|
||
|
if(isPHasymm)
|
||
|
newShape[iHposition] += 1;
|
||
|
if(isPWasymm)
|
||
|
newShape[iHposition + 1] += 1;
|
||
|
|
||
|
NDArray* newInput = new NDArray(input->ordering(), newShape, input->dataType(), input->getContext());
|
||
|
|
||
|
if(isNCHW)
|
||
|
(*newInput)({0,0, 0,0, 0,input->sizeAt(2), 0,input->sizeAt(3)}).assign(input);
|
||
|
else
|
||
|
(*newInput)({0,0, 0,input->sizeAt(1), 0,input->sizeAt(2), 0,0}).assign(input);
|
||
|
|
||
|
input = newInput;
|
||
|
|
||
|
if(gradI != nullptr)
|
||
|
gradI = new NDArray(gradI->ordering(), newShape, gradI->dataType(), gradI->getContext());
|
||
|
}
|
||
|
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////
|
||
|
FORCEINLINE void checkConv3dCUDNNPadAsymmetric(NDArray* &input, NDArray* &gradI,
|
||
|
const int iD, const int iH, const int iW,
|
||
|
const int oD, const int oH, const int oW,
|
||
|
const int kD, const int kH, const int kW,
|
||
|
const int sD, const int sH, const int sW,
|
||
|
const int pD, const int pH, const int pW,
|
||
|
const int dD, const int dH, const int dW,
|
||
|
const bool isNCDHW) {
|
||
|
|
||
|
const auto pDsum = ((oD - 1) * sD + ((kD - 1) * dD + 1) - iD);
|
||
|
const auto pHsum = ((oH - 1) * sH + ((kH - 1) * dH + 1) - iH);
|
||
|
const auto pWsum = ((oW - 1) * sW + ((kW - 1) * dW + 1) - iW);
|
||
|
|
||
|
const bool isPDasymm = pD != (pDsum - pD);
|
||
|
const bool isPHasymm = pH != (pHsum - pH);
|
||
|
const bool isPWasymm = pW != (pWsum - pW);
|
||
|
|
||
|
if(!isPDasymm && !isPHasymm && !isPWasymm)
|
||
|
return;
|
||
|
|
||
|
std::vector<Nd4jLong> newShape = input->getShapeAsVector();
|
||
|
|
||
|
const int iDposition = isNCDHW ? 2 : 1;
|
||
|
|
||
|
if(isPDasymm)
|
||
|
newShape[iDposition] += 1;
|
||
|
if(isPHasymm)
|
||
|
newShape[iDposition + 1] += 1;
|
||
|
if(isPWasymm)
|
||
|
newShape[iDposition + 2] += 1;
|
||
|
|
||
|
NDArray* newInput = new NDArray(input->ordering(), newShape, input->dataType(), input->getContext());
|
||
|
|
||
|
if(isNCDHW)
|
||
|
(*newInput)({0,0, 0,0, 0,input->sizeAt(2), 0,input->sizeAt(3), 0,input->sizeAt(4)}).assign(input);
|
||
|
else
|
||
|
(*newInput)({0,0, 0,input->sizeAt(1), 0,input->sizeAt(2), 0,input->sizeAt(3), 0,0}).assign(input);
|
||
|
|
||
|
input = newInput;
|
||
|
|
||
|
if(gradI != nullptr)
|
||
|
gradI = new NDArray(gradI->ordering(), newShape, gradI->dataType(), gradI->getContext());
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif //SD_CUDNNUTILS_H
|