2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by Yurii Shyrma on 12.12.2017.
|
|
|
|
//
|
|
|
|
|
|
|
|
#ifndef LIBND4J_ZETA_H
|
|
|
|
#define LIBND4J_ZETA_H
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/helpers.h>
|
2020-03-02 10:49:41 +01:00
|
|
|
#include "array/NDArray.h"
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2019-06-06 14:21:15 +02:00
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
|
|
|
|
// calculate the Hurwitz zeta function for arrays
|
2020-03-02 10:49:41 +01:00
|
|
|
void zeta(sd::LaunchContext * context, const NDArray& x, const NDArray& q, NDArray& output);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// calculate the Hurwitz zeta function for scalars
|
|
|
|
// fast implementation, it is based on Euler-Maclaurin summation formula
|
|
|
|
template <typename T>
|
|
|
|
_CUDA_HD T zetaScalar(const T x, const T q) {
|
|
|
|
|
|
|
|
const T machep = 1.11022302462515654042e-16;
|
|
|
|
|
|
|
|
// FIXME: @raver119
|
|
|
|
// expansion coeffZetaicients for Euler-Maclaurin summation formula (2k)! / B2k, where B2k are Bernoulli numbers
|
|
|
|
const T coeffZeta[] = { 12.0,-720.0,30240.0,-1209600.0,47900160.0,-1.8924375803183791606e9,7.47242496e10,-2.950130727918164224e12, 1.1646782814350067249e14, -4.5979787224074726105e15, 1.8152105401943546773e17, -7.1661652561756670113e18};
|
|
|
|
|
|
|
|
// if (x <= (T)1.)
|
|
|
|
// throw("zeta function: x must be > 1 !");
|
|
|
|
|
|
|
|
// if (q <= (T)0.)
|
|
|
|
// throw("zeta function: q must be > 0 !");
|
|
|
|
|
|
|
|
T a, b(0.), k, s, t, w;
|
|
|
|
|
|
|
|
s = math::nd4j_pow<T, T, T>(q, -x);
|
|
|
|
a = q;
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
while(i < 9 || a <= (T)9.) {
|
|
|
|
i += 1;
|
|
|
|
a += (T)1.0;
|
|
|
|
b = math::nd4j_pow<T, T, T>(a, -x);
|
|
|
|
s += b;
|
|
|
|
if(math::nd4j_abs(b / s) < (T)machep)
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
w = a;
|
|
|
|
s += b * (w / (x - (T)1.) - (T)0.5);
|
|
|
|
a = (T)1.;
|
|
|
|
k = (T)0.;
|
|
|
|
|
|
|
|
for(i = 0; i < 12; ++i) {
|
|
|
|
a *= x + k;
|
|
|
|
b /= w;
|
|
|
|
t = a * b / coeffZeta[i];
|
|
|
|
s += t;
|
|
|
|
t = math::nd4j_abs(t / s);
|
|
|
|
|
|
|
|
if(t < (T)machep)
|
|
|
|
return s;
|
|
|
|
|
|
|
|
k += (T)1.f;
|
|
|
|
a *= x + k;
|
|
|
|
b /= w;
|
|
|
|
k += (T)1.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif //LIBND4J_ZETA_H
|