2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
// @author raver119@gmail.com
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 19.11.2018
|
|
|
|
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <system/op_boilerplate.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <loops/reduce3.h>
|
|
|
|
#include <loops/legacy_ops.h>
|
|
|
|
#include <types/types.h>
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <ops/specials_cuda.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
using namespace simdOps;
|
|
|
|
|
|
|
|
namespace functions {
|
|
|
|
namespace reduce3 {
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
2019-08-02 19:01:03 +02:00
|
|
|
__global__ void execScalarGeneric(const int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-08-02 19:01:03 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-08-02 19:01:03 +02:00
|
|
|
int* allocationPointer,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *reductionBuffer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
Reduce3<X,Z>::execScalarCuda(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, allocationPointer, reductionBuffer, tadOnlyShapeInfo);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename X, typename Z>
|
|
|
|
__global__ void execAllGeneric(const int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
int *dimension, int dimensionLength,
|
|
|
|
int postProcessOrNot,
|
|
|
|
int *allocationPointer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets,
|
|
|
|
Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
Reduce3<X,Z>::execAllCuda(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
__global__ void execGeneric(const int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
int *dimension, int dimensionLength,
|
|
|
|
int postProcessOrNot,
|
|
|
|
int *allocationPointer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets,
|
|
|
|
Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
Reduce3<X,Z>::execCuda(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template <typename OpType>
|
|
|
|
__device__ void Reduce3<X,Z>::aggregatePartials(void* vsPartials, Nd4jLong tid, Nd4jLong numItems, void *vextraParams) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
// start the shared memory loop on the next power of 2 less
|
|
|
|
// than the block size. If block size is not a power of 2,
|
|
|
|
// accumulate the intermediate sums in the remainder range.
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto sPartials = reinterpret_cast<Z*>(vsPartials);
|
|
|
|
auto extraParams = reinterpret_cast<Z *>(vextraParams);
|
|
|
|
Nd4jLong floorPow2 = numItems;
|
|
|
|
|
|
|
|
if (floorPow2 & (floorPow2 - 1)) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
while(floorPow2 & (floorPow2 - 1))
|
2019-06-06 14:21:15 +02:00
|
|
|
floorPow2 &= floorPow2 - 1;
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
if (tid >= floorPow2)
|
2019-06-06 14:21:15 +02:00
|
|
|
sPartials[tid - floorPow2] = OpType::update(sPartials[tid - floorPow2], sPartials[tid], extraParams);
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
|
|
|
|
for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
|
2019-08-02 19:01:03 +02:00
|
|
|
if (tid < activeThreads)
|
2019-06-06 14:21:15 +02:00
|
|
|
sPartials[tid] = OpType::update(sPartials[tid], sPartials[tid + activeThreads], extraParams);
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template<typename OpType>
|
2020-05-09 07:06:14 +02:00
|
|
|
__device__ void Reduce3<X,Z>::execScalarCuda( void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void* vz, Nd4jLong const* zShapeInfo,
|
|
|
|
int *allocationPointer, void *reductionBuffer, Nd4jLong const* tadOnlyShapeInfo) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto x = reinterpret_cast<X const*>(vx);
|
|
|
|
auto y = reinterpret_cast<X const*>(vy);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
|
|
|
|
__shared__ Z extraZ[3];
|
2020-07-26 14:59:27 +02:00
|
|
|
__shared__ Z sPartials[CUDA_BLOCK_SIZE];
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extraZ[0] = (Z) 0.0f;
|
|
|
|
extraZ[1] = (Z) 0.0f;
|
|
|
|
|
|
|
|
if (extraParams != nullptr)
|
2019-11-13 15:15:18 +01:00
|
|
|
extraZ[2] = static_cast<Z*>(extraParams)[2];
|
2019-06-06 14:21:15 +02:00
|
|
|
else
|
|
|
|
extraZ[2] = (Z) 0.0f;
|
|
|
|
}
|
2019-08-02 19:01:03 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
sPartials[threadIdx.x] = OpType::startingValue(x);
|
|
|
|
Nd4jLong length = shape::length(xShapeInfo);
|
|
|
|
int xEws = shape::elementWiseStride(xShapeInfo);
|
|
|
|
int yEws = shape::elementWiseStride(yShapeInfo);
|
|
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
char xOrder = shape::order(xShapeInfo);
|
|
|
|
char yOrder = shape::order(yShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if(xOrder == yOrder && (xEws > 0 && yEws > 0) && shape::strideDescendingCAscendingF(xShapeInfo) && shape::strideDescendingCAscendingF(yShapeInfo)) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (xEws == 1 && yEws == 1) {
|
|
|
|
for(Nd4jLong i = tid; i < length; i+= gridDim.x * blockDim.x)
|
|
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[i], y[i], extraZ), extraZ);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
else {
|
2019-08-02 19:01:03 +02:00
|
|
|
for(Nd4jLong i = tid; i < length; i+= gridDim.x * blockDim.x)
|
|
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[i * xEws], y[i * yEws], extraZ), extraZ);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-08-02 19:01:03 +02:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
sPartials[threadIdx.x] = OpType::startingValue(x);
|
|
|
|
auto threadCount = gridDim.x * blockDim.x;
|
|
|
|
for(Nd4jLong i = tid; i < length; i += threadCount) {
|
2019-09-11 19:12:09 +02:00
|
|
|
auto xOffset = shape::getIndexOffset(i, xShapeInfo);
|
|
|
|
auto yOffset = shape::getIndexOffset(i, yShapeInfo);
|
2019-08-02 19:01:03 +02:00
|
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[xOffset], y[yOffset], extraZ), extraZ);
|
|
|
|
}
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
__syncthreads();
|
2020-03-02 10:49:41 +01:00
|
|
|
aggregatePartials<OpType>(reinterpret_cast<void*>(sPartials), threadIdx.x, sd::math::nd4j_min<int>(blockDim.x, length), extraZ);
|
2019-08-02 19:01:03 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (gridDim.x > 1) {
|
|
|
|
|
|
|
|
auto tc = reinterpret_cast<unsigned int *>(reductionBuffer);
|
|
|
|
__shared__ bool amLast;
|
|
|
|
int rank = shape::rank(xShapeInfo);
|
|
|
|
tid = threadIdx.x;
|
|
|
|
Z *extraBuffer = (Z *) allocationPointer;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
reinterpret_cast<Z*>(reductionBuffer)[blockIdx.x] = sPartials[0];
|
|
|
|
extraBuffer[blockIdx.x] = extraZ[0];
|
|
|
|
extraBuffer[gridDim.x + blockIdx.x] = extraZ[1];
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
__threadfence();
|
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
unsigned int ticket = atomicInc(&tc[16384], gridDim.x);
|
|
|
|
amLast = (ticket == gridDim.x - 1);
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
sPartials[tid] = OpType::startingValue(x);
|
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (amLast) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
tc[16384] = 0;
|
|
|
|
sPartials[threadIdx.x] = OpType::startingValue(x);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
// TODO: later probably replace this. Right now we need extraZ sync for CosineSimilarity ONLY
|
|
|
|
if (tid == 0 && extraZ[0] != static_cast<Z>(0) && extraZ[1] != static_cast<Z>(0)) {
|
|
|
|
extraZ[0] = 0.0;
|
|
|
|
extraZ[1] = 0.0;
|
|
|
|
for (int i = 0; i < gridDim.x; i++) {
|
|
|
|
extraZ[0] += extraBuffer[i];
|
|
|
|
extraZ[1] += extraBuffer[gridDim.x + i];
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-08-02 19:01:03 +02:00
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
for (Nd4jLong i = threadIdx.x; i < gridDim.x; i += blockDim.x)
|
|
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], static_cast<Z*>(reductionBuffer)[i], extraZ);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
__syncthreads();
|
2020-03-02 10:49:41 +01:00
|
|
|
aggregatePartials<OpType>(reinterpret_cast<void*>(sPartials), threadIdx.x, sd::math::nd4j_min<int>(gridDim.x, blockDim.x), extraZ);
|
2019-08-02 19:01:03 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (threadIdx.x == 0)
|
|
|
|
z[0] = OpType::postProcess(sPartials[0], length, extraZ);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-08-02 19:01:03 +02:00
|
|
|
}
|
|
|
|
else {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (tid == 0) {
|
|
|
|
auto tc = reinterpret_cast<unsigned int*>(reductionBuffer);
|
|
|
|
tc[16384] = 0;
|
|
|
|
z[0] = OpType::postProcess(sPartials[0], length, extraZ);
|
|
|
|
//printf("Z: [%f]\n", (float) z[0]);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-08-02 19:01:03 +02:00
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template<typename OpType>
|
2020-05-09 07:06:14 +02:00
|
|
|
__device__ void Reduce3<X,Z>::transformAll( void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
int *dimension, int dimensionLength,
|
|
|
|
int postProcessOrNot,
|
|
|
|
int *allocationPointer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* xTadShapeInfo, Nd4jLong const* xOffsets,
|
|
|
|
Nd4jLong const* yTadShapeInfo, Nd4jLong const* yOffsets) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto dx = reinterpret_cast<X const*>(vx);
|
|
|
|
auto dy = reinterpret_cast<X const*>(vy);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
|
|
|
|
// initialize partials first
|
2020-07-26 14:59:27 +02:00
|
|
|
__shared__ Z sPartials[CUDA_BLOCK_SIZE];
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
Z startingVal = OpType::startingValue(dx);
|
|
|
|
sPartials[threadIdx.x] = startingVal;
|
2020-07-26 14:59:27 +02:00
|
|
|
auto tempX = reinterpret_cast<X*>(sPartials) + blockDim.x;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
const int maxBlock = blockDim.x;
|
|
|
|
|
|
|
|
__shared__ Z extraZ[OpType::extraParamsLen > 0 ? OpType::extraParamsLen : 1];
|
|
|
|
|
|
|
|
__shared__ int xTadLength;
|
|
|
|
__shared__ int yTadLength;
|
|
|
|
|
|
|
|
__shared__ int xTads;
|
2019-08-02 19:01:03 +02:00
|
|
|
__shared__ int yTads;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
//reading initial data
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
xTadLength = shape::length(xTadShapeInfo);
|
|
|
|
yTadLength = shape::length(yTadShapeInfo);
|
|
|
|
|
|
|
|
xTads = shape::length(xShapeInfo) / xTadLength;
|
|
|
|
yTads = shape::length(yShapeInfo) / yTadLength;
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
int limit = xTadLength / maxBlock;
|
|
|
|
if (xTadLength % maxBlock > 0)
|
|
|
|
limit++;
|
|
|
|
|
|
|
|
for (int r = blockIdx.x; r < xTads; r += blockDim.x * gridDim.x) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto x = dx + xOffsets[r];
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (threadIdx.x < xTadLength && threadIdx.x < maxBlock) {
|
2019-09-11 19:12:09 +02:00
|
|
|
auto x0 = shape::getIndexOffset(threadIdx.x, xTadShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
tempX[threadIdx.x] = x[x0];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
for (int g = 0; g < yTads; g++) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto y = dy + yOffsets[g];
|
2019-06-06 14:21:15 +02:00
|
|
|
int ri = (r * yTads) + g;
|
|
|
|
|
|
|
|
sPartials[threadIdx.x] = startingVal;
|
|
|
|
if (OpType::extraParamsLen > 0 && threadIdx.x < OpType::extraParamsLen)
|
|
|
|
extraZ[threadIdx.x] = startingVal;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// we might have data too large for single cache block, rendering cache useless though :(
|
|
|
|
for (int t = 0; t < limit; t++) {
|
|
|
|
|
|
|
|
// we reset tempX IF we have >1 tiles
|
|
|
|
if (t >= 1 || (limit > 1 && g > 0))
|
2019-08-02 19:01:03 +02:00
|
|
|
if (threadIdx.x + (t * maxBlock) < xTadLength) {
|
2019-09-11 19:12:09 +02:00
|
|
|
auto x0 = shape::getIndexOffset(threadIdx.x + (t * maxBlock), xTadShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
tempX[threadIdx.x] = x[x0];
|
|
|
|
}
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
for (int f = threadIdx.x + (t * maxBlock); f < xTadLength && f < threadIdx.x + ((t + 1) * maxBlock); f += blockDim.x * gridDim.x) {
|
2019-09-11 19:12:09 +02:00
|
|
|
auto y0 = shape::getIndexOffset(f, yTadShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(tempX[threadIdx.x], y[y0], extraZ), extraZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
// we MUST step through this block altogether
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
aggregatePartials<OpType>(reinterpret_cast<void*>(sPartials), threadIdx.x, sd::math::nd4j_min<int>(blockDim.x, xTadLength), extraZ);
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
z[ri] = OpType::postProcess(sPartials[threadIdx.x], xTadLength, extraZ);
|
|
|
|
}
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template<typename OpType>
|
2020-05-09 07:06:14 +02:00
|
|
|
__device__ void Reduce3<X,Z>::transform(void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
int *dimension, int dimensionLength,
|
2019-08-02 19:01:03 +02:00
|
|
|
int postProcessOrNot,
|
2019-06-06 14:21:15 +02:00
|
|
|
int *allocationPointer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets,
|
|
|
|
Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
// FIXME
|
|
|
|
if(shape::isScalar(zShapeInfo))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (yTadOnlyShapeInfo == nullptr) {
|
|
|
|
yTadOnlyShapeInfo = yShapeInfo; // execReduce3TAD case
|
|
|
|
}
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto x = reinterpret_cast<X const*>(vx);
|
|
|
|
auto y = reinterpret_cast<X const*>(vy);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
Z startingVal = OpType::startingValue(x);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
__shared__ Z extraZ[OpType::extraParamsLen > 0 ? OpType::extraParamsLen : 1];
|
|
|
|
|
2020-07-26 14:59:27 +02:00
|
|
|
__shared__ Z sPartials[CUDA_BLOCK_SIZE];
|
2019-06-06 14:21:15 +02:00
|
|
|
__shared__ int tadLen;
|
|
|
|
__shared__ Nd4jLong zLen;
|
|
|
|
__shared__ Nd4jLong xTadEws;
|
2019-08-02 19:01:03 +02:00
|
|
|
__shared__ Nd4jLong yTadEws;
|
2019-06-06 14:21:15 +02:00
|
|
|
__shared__ Nd4jLong yTadNum;
|
|
|
|
__shared__ char xTadOrder;
|
|
|
|
__shared__ char yTadOrder;
|
|
|
|
|
|
|
|
if(threadIdx.x == 0) {
|
|
|
|
tadLen = shape::length(tadOnlyShapeInfo);
|
|
|
|
zLen = shape::length(zShapeInfo);
|
|
|
|
xTadEws = shape::elementWiseStride(tadOnlyShapeInfo);
|
2019-08-02 19:01:03 +02:00
|
|
|
yTadEws = shape::elementWiseStride(yTadOnlyShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
yTadNum = shape::length(yShapeInfo) / tadLen;
|
|
|
|
xTadOrder = shape::order(tadOnlyShapeInfo);
|
|
|
|
yTadOrder = shape::order(yTadOnlyShapeInfo);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sPartials[threadIdx.x] = startingVal;
|
|
|
|
|
|
|
|
if(xTadEws >= 1 && yTadEws >= 1 && xTadOrder == yTadOrder) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
for(int i = blockIdx.x; i < zLen; i+= gridDim.x) {
|
|
|
|
|
|
|
|
Nd4jLong xOffset = tadOffsets[i];
|
|
|
|
Nd4jLong yOffset = yTadNum == 1 ? 0 : yTadOffsets[i];
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (OpType::extraParamsLen > 0 && threadIdx.x < OpType::extraParamsLen)
|
2019-06-06 14:21:15 +02:00
|
|
|
extraZ[threadIdx.x] = startingVal;
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
for (int j = threadIdx.x; j < tadLen; j += blockDim.x) {
|
|
|
|
|
|
|
|
Nd4jLong xOffset2 = xOffset + j*xTadEws;
|
|
|
|
Nd4jLong yOffset2 = yOffset + j*yTadEws;
|
|
|
|
sPartials[threadIdx.x] = j < blockDim.x ? OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ) : OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ), extraZ);
|
|
|
|
}
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
2020-03-02 10:49:41 +01:00
|
|
|
aggregatePartials<OpType>(reinterpret_cast<void*>(sPartials), threadIdx.x, sd::math::nd4j_min<int>(blockDim.x, tadLen), extraZ);
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
z[i] = OpType::postProcess(sPartials[threadIdx.x], tadLen, extraZ);
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
|
|
|
for(int i = blockIdx.x; i < zLen; i += gridDim.x) {
|
|
|
|
|
|
|
|
Nd4jLong xOffset = tadOffsets[i];
|
|
|
|
Nd4jLong yOffset = yTadNum == 1 ? 0 : yTadOffsets[i];
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (OpType::extraParamsLen > 0 && threadIdx.x < OpType::extraParamsLen)
|
2019-06-06 14:21:15 +02:00
|
|
|
extraZ[threadIdx.x] = startingVal;
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
for (int j = threadIdx.x; j < tadLen; j += blockDim.x) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-09-11 19:12:09 +02:00
|
|
|
Nd4jLong xOffset2 = xOffset + shape::getIndexOffset(j, tadOnlyShapeInfo);
|
|
|
|
Nd4jLong yOffset2 = yOffset + shape::getIndexOffset(j, yTadOnlyShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
sPartials[threadIdx.x] = j < blockDim.x ? OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ) : OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ), extraZ);
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
2020-03-02 10:49:41 +01:00
|
|
|
aggregatePartials<OpType>(reinterpret_cast<void*>(sPartials), threadIdx.x, sd::math::nd4j_min<int>(blockDim.x, tadLen), extraZ);
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
z[i] = OpType::postProcess(sPartials[threadIdx.x], tadLen, extraZ);
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Y>
|
|
|
|
__device__ void Reduce3<X,Y>::execCuda(const int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
int *dimension, int dimensionLength,
|
|
|
|
int postProcessOrNot,
|
|
|
|
int *allocationPointer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets,
|
|
|
|
Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
DISPATCH_BY_OPNUM_TT(transform, PARAMS(vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets), REDUCE3_OPS);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Y>
|
|
|
|
__device__ void Reduce3<X,Y>::execAllCuda( const int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
int *dimension, int dimensionLength,
|
|
|
|
int postProcessOrNot,
|
|
|
|
int *allocationPointer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets,
|
|
|
|
Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
DISPATCH_BY_OPNUM_TT(transformAll, PARAMS(vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets), REDUCE3_OPS);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Y>
|
|
|
|
__device__ void Reduce3<X,Y>::execScalarCuda(const int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-08-02 19:01:03 +02:00
|
|
|
int * allocationPointer, void *reductionBuffer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
DISPATCH_BY_OPNUM_TT(execScalarCuda, PARAMS(vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, allocationPointer, reductionBuffer, tadOnlyShapeInfo), REDUCE3_OPS);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
2019-08-02 19:01:03 +02:00
|
|
|
__host__ void Reduce3<X,Z>::exec(dim3 launchDims, cudaStream_t *stream,
|
2019-06-06 14:21:15 +02:00
|
|
|
int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-08-02 19:01:03 +02:00
|
|
|
int *dimension, int dimensionLength,
|
|
|
|
int postProcessOrNot,
|
|
|
|
int *allocationPointer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets,
|
|
|
|
Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
execGeneric<X, Z><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets);
|
2020-03-02 10:49:41 +01:00
|
|
|
sd::DebugHelper::checkErrorCode(stream, "reduce3exec(...) failed");
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
__host__ void Reduce3<X,Z>::execAll(dim3 launchDims, cudaStream_t *stream,
|
|
|
|
int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
int *dimension, int dimensionLength,
|
|
|
|
int postProcessOrNot,
|
|
|
|
int *allocationPointer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets,
|
|
|
|
Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
execAllGeneric<X, Z><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets);
|
2020-03-02 10:49:41 +01:00
|
|
|
sd::DebugHelper::checkErrorCode(stream, "execAllGeneric(...) failed");
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
2019-08-02 19:01:03 +02:00
|
|
|
__host__ void Reduce3<X,Z>::execScalar(dim3 launchDims, cudaStream_t *stream,
|
|
|
|
int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
void const* vx, Nd4jLong const* xShapeInfo,
|
|
|
|
void const* vy, Nd4jLong const* yShapeInfo,
|
2019-08-02 19:01:03 +02:00
|
|
|
void *extraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-08-02 19:01:03 +02:00
|
|
|
int* allocationPointer,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *reductionBuffer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
execScalarGeneric<X,Z><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, allocationPointer, reductionBuffer, tadOnlyShapeInfo);
|
2020-03-02 10:49:41 +01:00
|
|
|
sd::DebugHelper::checkErrorCode(stream, "execScalarGeneric(...) failed");
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[WIP] build time improvements (#106)
* fix pad javadoc and @see links. (#72)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* [WIP] More fixes (#73)
* special tests for ConstantTadHelper/ConstantShapeHelper
Signed-off-by: raver119 <raver119@gmail.com>
* release methods for data buffers
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary TadPack C++/Java side (#74)
Signed-off-by: raver119 <raver119@gmail.com>
* Zoo model TF import test updates (#75)
* argLine fix, update compression_gru comment
* updated comment for xception
* undid but commented argLine change
* updated xlnet comment
* copyright headers
* - new NDArray methods like()/ulike() (#77)
- fix for depthwise_conv2d_bp + special test
Signed-off-by: raver119 <raver119@gmail.com>
* upsampling2d fix CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* DL4J trace logging (#79)
* MLN/CG trace logging for debugging
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tiny tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* strided_slice_bp shape fn leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff fixes and naming (#78)
* remove SDVariable inplace methods
* import methods
* npe fix in OpVal
* removed SameDiff inplace ops from tests
* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything
* quick fixes
* javadoc
* SDVariable eval with placeholders
* use regex match
* better matching
* fix javadoc. (#76)
* fix javadoc.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace most @see with @link s.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* 4 additional tests
Signed-off-by: raver119 <raver119@gmail.com>
* Various DL4J/ND4J fixes (#81)
* #7954 Force refresh of UI when switching tabs on overview page
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8017 Concurrent modification exception (synchronize) fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8033 Don't initialize updater in middle of writing memory crash dump
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8208 Fix shape checks for ND4J int[] creator methods
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6385 #7992 Keras import naming fixes + cleanup
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8016 Upsampling3D - add NDHWC format support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Refactor NativeOps.h to export C functions
* Actually export functions from NativeOps.h
* Adapt the Java wrappers in ND4J generated with JavaCPP
* Create C wrappers for some of the C++ classes currently used by ND4J
* remove duplicate code in createBufferDetached. (#83)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Keras model import - updater lr fix (#84)
* Keras model import - updater lr fix
Signed-off-by: eraly <susan.eraly@gmail.com>
* Keras model import - updater lr fix, cleanup
Signed-off-by: eraly <susan.eraly@gmail.com>
* Fix functions of OpaqueVariablesSet
* SameDiff Convolution Config validation, better output methods (#82)
* Conv Config validation & tests
Signed-off-by: Ryan Nett <rnett@skymind.io>
* stackOutputs utility method
Signed-off-by: Ryan Nett <rnett@skymind.io>
* use constructor for validation, support negative kernel sizes (infered from weights)
Signed-off-by: Ryan Nett <rnett@skymind.io>
* better output methods
Signed-off-by: Ryan Nett <rnett@skymind.io>
* move output to be with fit and evaluate
Signed-off-by: Ryan Nett <rnett@skymind.io>
* fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* more fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* refactor duplicate code from pad methods. (#86)
* refactor duplicate code from pad methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace switch with if.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes and improvements (#87)
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6488 ElementWiseVertex broadcast support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Constructors and broadcast supported it Transforms.max/min
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8054 ElementWiseVertex now supports broadcast inputs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8057 Nd4j.create overload dtype fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7551 ND4J Shape validation fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Numpy boolean import (#91)
* numpy bool type
Signed-off-by: raver119 <raver119@gmail.com>
* numpy bool java side
Signed-off-by: raver119 <raver119@gmail.com>
* remove create method with unused parameter. (#89)
* remove create method with unused parameter.
* removed more unused methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* removing more unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* last removal of unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* remove createSparse methods. (#92)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes (#90)
* Deprecate Old*Op instances
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8063 #8054 Broadcast exceptions + cleanup inplace ops
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Remove bad test condition
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7993 Fix shape function issue in crop_and_resize op
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* DL4J SameDiff lambda layer fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8029 Fix for pnorm backprop math
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* createUninitializedDetached refactoring. (#94)
* wip
* update interface, add null implementations.
* Breaking one test in a weird way.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* createUninitializedDetached refactored.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* cuda build fix for issues introduced by recent refactoring
Signed-off-by: raver119 <raver119@gmail.com>
* [WIP] More of CUDA (#95)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* Implementation of hashcode cuda helper. Working edition.
* Fixed parallel test input arangements.
* Fixed tests for hashcode op.
* Fixed shape calculation for image:crop_and_resize op and test.
* NativeOps tests. Initial test suite.
* Added tests for indexReduce methods.
* Added test on execBroadcast with NDArray as dimensions.
* Added test on execBroadcastBool with NDArray as dimensions.
* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.
* Added tests for execReduce with scalar results.
* Added reduce tests for non-empty dims array.
* Added tests for reduce3.
* Added tests for execScalar.
* Added tests for execSummaryStats.
* - provide cpu/cuda code for batch_to_space
- testing it
Signed-off-by: Yurii <yurii@skymind.io>
* - remove old test for batch_to_space (had wrong format and numbers were not checked)
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed complilation errors with test.
* Added test for execTransformFloat.
* Added test for execTransformSame.
* Added test for execTransformBool.
* Added test for execTransformStrict.
* Added tests for execScalar/execScalarBool with TADs.
* Added test for flatten.
* - provide cpu/cuda code for space_to_Batch operaion
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for concat.
* comment unnecessary stuff in s_t_b
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for specialConcat.
* Added tests for memcpy/set routines.
* Fixed pullRow cuda test.
* Added pullRow test.
* Added average test.
* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)
Signed-off-by: Yurii <yurii@skymind.io>
* - debugging and fixing cuda tests in JavaInteropTests file
Signed-off-by: Yurii <yurii@skymind.io>
* - correct some tests
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for shuffle.
* Fixed ops declarations.
* Restored omp and added shuffle test.
* Added convertTypes test.
* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.
* Added sort tests.
* Added tests for execCustomOp.
* - further debuging and fixing tests terminated with crash
Signed-off-by: Yurii <yurii@skymind.io>
* Added tests for calculateOutputShapes.
* Addded Benchmarks test.
* Commented benchmark tests.
* change assertion
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for apply_sgd op. Added cpu helper for that op.
* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.
* Added test for assign broadcastable.
* Added tests for assign_bp op.
* Added tests for axpy op.
* - assign/execScalar/execTransformAny signature change
- minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed axpy op.
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* - fix tests for nativeOps::concat
Signed-off-by: Yurii <yurii@skymind.io>
* sequential transform/scalar
Signed-off-by: raver119 <raver119@gmail.com>
* allow nested parallelism
Signed-off-by: raver119 <raver119@gmail.com>
* assign_bp leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* block setRNG fix
Signed-off-by: raver119 <raver119@gmail.com>
* enable parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* enable nested parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* Added cuda implementation for row_count helper.
* Added implementation for tnse gains op helper.
* - take into account possible situations when input arrays are empty in reduce_ cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.
* Added kernel for tsne/symmetrized op heleper.
* Implementation of tsne/symmetrized op cuda helper. Working edition.
* Eliminated waste printfs.
* Added test for broadcastgradientargs op.
* host-only fallback for empty reduce float
Signed-off-by: raver119 <raver119@gmail.com>
* - some tests fixes
Signed-off-by: Yurii <yurii@skymind.io>
* - correct the rest of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* - further correction of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for Cbow op. Also added cuda implementation for cbow helpers.
* - improve code of stack operation for scalar case
Signed-off-by: Yurii <yurii@skymind.io>
* - provide cuda kernel for gatherND operation
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of cbow helpers with cuda kernels.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* - further correction of cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implementatation of cbow op helper with cuda kernels. Working edition.
* Skip random testing for cudablas case.
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for ELU and ELU_BP ops.
* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.
* Added tests for neq_scalar.
* Added test for noop.
* - further work on clipbynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* - get rid of concat op call, use instead direct concat helper call
Signed-off-by: Yurii <yurii@skymind.io>
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for lrelu and lrelu_bp.
* Added tests for selu and selu_bp.
* Fixed lrelu derivative helpers.
* - some corrections in lstm
Signed-off-by: Yurii <yurii@skymind.io>
* operator * result shape fix
Signed-off-by: raver119 <raver119@gmail.com>
* - correct typo in lstmCell
Signed-off-by: Yurii <yurii@skymind.io>
* few tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA inverse broadcast bool fix
Signed-off-by: raver119 <raver119@gmail.com>
* disable MMAP test for CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* BooleanOp syncToDevice
Signed-off-by: raver119 <raver119@gmail.com>
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* additional data types for im2col/col2im
Signed-off-by: raver119 <raver119@gmail.com>
* Added test for firas_sparse op.
* one more RandomBuffer test excluded
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for flatten op.
* Added test for Floor op.
* bunch of tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* mmulDot tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Implemented floordiv_bp op and tests.
* Fixed scalar case with cuda implementation for bds.
* - work on cuda kernel for clip_by_norm backprop op is completed
Signed-off-by: Yurii <yurii@skymind.io>
* Eliminate cbow crach.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminated abortion with batched nlp test.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed shared flag initializing.
* disabled bunch of cpu workspaces tests
Signed-off-by: raver119 <raver119@gmail.com>
* scalar operators fix: missing registerSpecialUse call
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed logdet for cuda and tests.
* - correct clipBynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed crop_and_resize shape datatype.
* - correct some mmul tests
Signed-off-by: Yurii <yurii@skymind.io>
* build fix
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI (#97)
Signed-off-by: raver119 <raver119@gmail.com>
* temporary stack fix
Signed-off-by: raver119 <raver119@gmail.com>
* couple of legacy groups reorganized into separate compialtion units
Signed-off-by: raver119 <raver119@gmail.com>
* wrong include
Signed-off-by: raver119 <raver119@gmail.com>
* wrong include
Signed-off-by: raver119 <raver119@gmail.com>
* ReductionLoops_float split
Signed-off-by: raver119 <raver119@gmail.com>
* maximum
Signed-off-by: raver119 <raver119@gmail.com>
* some more rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* spare ifdef
Signed-off-by: raver119 <raver119@gmail.com>
* mirror pad
Signed-off-by: raver119 <raver119@gmail.com>
* - reduce_float split
- mcmodel
Signed-off-by: raver119 <raver119@gmail.com>
* bad include fix
Signed-off-by: raver119 <raver119@gmail.com>
* norelax
Signed-off-by: raver119 <raver119@gmail.com>
* norelax
Signed-off-by: raver119 <raver119@gmail.com>
* norelax
Signed-off-by: raver119 <raver119@gmail.com>
* norelax
Signed-off-by: raver119 <raver119@gmail.com>
* norelax
Signed-off-by: raver119 <raver119@gmail.com>
* norelax gone
Signed-off-by: raver119 <raver119@gmail.com>
* get back sm
Signed-off-by: raver119 <raver119@gmail.com>
* fix couple of tests for msvc
Signed-off-by: raver119 <raver119@gmail.com>
* fix couple of tests for msvc
Signed-off-by: raver119 <raver119@gmail.com>
* compress-all
Signed-off-by: raver119 <raver119@gmail.com>
* reduced arch list
Signed-off-by: raver119 <raver119@gmail.com>
* compress-all
Signed-off-by: raver119 <raver119@gmail.com>
* reduced arch list
Signed-off-by: raver119 <raver119@gmail.com>
* all compute capabilities option for tests
Signed-off-by: raver119 <raver119@gmail.com>
2019-08-07 16:49:13 +02:00
|
|
|
//BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT Reduce3, , LIBND4J_TYPES, FLOAT_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
}
|
|
|
|
}
|