114 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			114 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*******************************************************************************
 | ||
|  |  * Copyright (c) 2015-2018 Skymind, Inc. | ||
|  |  * Copyright (c) 2019 Konduit K.K. | ||
|  |  * | ||
|  |  * This program and the accompanying materials are made available under the | ||
|  |  * terms of the Apache License, Version 2.0 which is available at | ||
|  |  * https://www.apache.org/licenses/LICENSE-2.0.
 | ||
|  |  * | ||
|  |  * Unless required by applicable law or agreed to in writing, software | ||
|  |  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | ||
|  |  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the | ||
|  |  * License for the specific language governing permissions and limitations | ||
|  |  * under the License. | ||
|  |  * | ||
|  |  * SPDX-License-Identifier: Apache-2.0 | ||
|  |  ******************************************************************************/ | ||
|  | 
 | ||
|  | //
 | ||
|  | // @author Oleh Semeniv (oleg.semeniv@gmail.com)
 | ||
|  | //
 | ||
|  | 
 | ||
|  | #include <op_boilerplate.h>
 | ||
|  | #if NOT_EXCLUDED(OP_random_multinomial)
 | ||
|  | 
 | ||
|  | #include <ops/declarable/CustomOperations.h>
 | ||
|  | #include <helpers/RandomLauncher.h>
 | ||
|  | #include <ops/declarable/helpers/random.h>
 | ||
|  | 
 | ||
|  | namespace nd4j { | ||
|  |     namespace ops { | ||
|  |         ///////////////////////
 | ||
|  |         /**
 | ||
|  |          * multinomial (categorical) random generator | ||
|  |          * takes 2D ndarray with logits with shape [batch_size (N), num_classes (K)] | ||
|  |          * and array with one scalar value of samples number, number of independent samples to draw for each experiment 1,N. | ||
|  |          * represents the unnormalized log-probabilities for all classes. | ||
|  |          * Int arguments: 0 - optional argument, corresponds to dimension with batch_size | ||
|  |          * Int arguments: 1 - optional argument, integer type to use for the output. Default int64. | ||
|  |          */ | ||
|  |          // used https://en.wikipedia.org/wiki/Categorical_distribution
 | ||
|  |          // methods: gumbel trick + softmax + argmax
 | ||
|  |         CUSTOM_OP_IMPL(random_multinomial, 2, 1, false, 0, 0) { | ||
|  |              | ||
|  |             auto input = INPUT_VARIABLE(0); | ||
|  |             auto output = OUTPUT_VARIABLE(0); | ||
|  |             auto inputSamples = INPUT_VARIABLE(1); | ||
|  | 
 | ||
|  | 
 | ||
|  |             REQUIRE_TRUE(!input->isEmpty(), 0, "RANDOM_MULTINOMIAL OP: Have to be provided at least one logits. "); | ||
|  | 
 | ||
|  |             REQUIRE_TRUE(inputSamples->lengthOf() == 1, 0, "RANDOM_MULTINOMIAL OP: Have to be specified at least one sample," | ||
|  |                 " but got no argumets instead."); | ||
|  |              | ||
|  |             Nd4jLong numOfSamples = static_cast<Nd4jLong>(inputSamples->e<int>(0)); | ||
|  |             // do nothing if number of samples = 0
 | ||
|  |             if (0 == numOfSamples) | ||
|  |                 return Status::OK(); | ||
|  | 
 | ||
|  |             REQUIRE_TRUE(numOfSamples > 0, 0, "RANDOM_MULTINOMIAL OP: Number of samples should be greater then 0, got %i. ", numOfSamples); | ||
|  | 
 | ||
|  |             const int rank = input->rankOf(); | ||
|  |             REQUIRE_TRUE(rank == 2, 0, "RANDOM_MULTINOMIAL OP: Logits should be a matrix with rank = 2, but got instead rank = %i.", rank); | ||
|  | 
 | ||
|  |             const int argSize = block.getIArguments()->size(); | ||
|  |             const int dimC = argSize > 0 ? (INT_ARG(0) >= 0 ? INT_ARG(0) : INT_ARG(0) + rank) : rank - 1; | ||
|  | 
 | ||
|  |             auto dimA = (0 == dimC) ? 1 : 0; | ||
|  |             if (1 == input->sizeAt(dimA)) { | ||
|  |                 *output = 0; | ||
|  |                 return Status::OK(); | ||
|  |             } | ||
|  | 
 | ||
|  |             auto rng = block.randomGenerator(); | ||
|  |             helpers::fillRandomMultiNomial(block.launchContext(), rng, *input, *output, numOfSamples, dimC); | ||
|  |             return Status::OK(); | ||
|  |         } | ||
|  | 
 | ||
|  | 
 | ||
|  |         DECLARE_SHAPE_FN(random_multinomial) { | ||
|  | 
 | ||
|  |             auto input = INPUT_VARIABLE(0); | ||
|  |             auto inputSamples = INPUT_VARIABLE(1); | ||
|  | 
 | ||
|  |             REQUIRE_TRUE(inputSamples->lengthOf() == 1, 0, "RANDOM_MULTINOMIAL OP: Have to be specified at least one sample," | ||
|  |                 " but got no argumets instead."); | ||
|  | 
 | ||
|  |             Nd4jLong numOfSamples = static_cast<Nd4jLong>(inputSamples->e<int>(0)); | ||
|  | 
 | ||
|  |             REQUIRE_TRUE(numOfSamples > 0, 0, "RANDOM_MULTINOMIAL OP: Number of samples should be greater then 0, got %i. ", numOfSamples); | ||
|  | 
 | ||
|  |             const int rank = input->rankOf(); | ||
|  |             REQUIRE_TRUE(rank == 2, 0, "RANDOM_MULTINOMIAL OP: Logits should be a matrix with rank = 2, but got instead rank = %i.", rank); | ||
|  | 
 | ||
|  |             const int argSize = block.getIArguments()->size(); | ||
|  |             const int dimC = argSize > 0 ? (INT_ARG(0) >= 0 ? INT_ARG(0) : INT_ARG(0) + rank) : rank - 1; | ||
|  |             | ||
|  |             auto nShape = input->getShapeAsVector(); | ||
|  |             auto dimA = (0 == dimC) ? 1 : 0; | ||
|  |             nShape[dimA] = numOfSamples; | ||
|  | 
 | ||
|  |             DataType nType = (argSize > 1) ? ( INT_ARG(1) >= 0 ? static_cast<DataType>(INT_ARG(1)) : nd4j::DataType::INT64) : nd4j::DataType::INT64; | ||
|  |             return SHAPELIST(ConstantShapeHelper::getInstance()->createShapeInfo(nType, input->ordering(), nShape)); | ||
|  |         } | ||
|  |          | ||
|  |         DECLARE_TYPES(random_multinomial) { | ||
|  |             getOpDescriptor() | ||
|  |                     ->setAllowedInputTypes(0, { ALL_FLOATS, ALL_INTS }) | ||
|  |                     ->setAllowedInputTypes(1, { nd4j::DataType::INT32 }) | ||
|  |                     ->setAllowedOutputTypes(0, { ALL_INDICES }); | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |