2021-02-01 13:31:45 +01:00
|
|
|
/* ******************************************************************************
|
|
|
|
*
|
2019-06-06 14:21:15 +02:00
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
2021-02-01 13:31:45 +01:00
|
|
|
* See the NOTICE file distributed with this work for additional
|
|
|
|
* information regarding copyright ownership.
|
2019-06-06 14:21:15 +02:00
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by raver119 on 18.12.17.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <types/types.h>
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <system/op_boilerplate.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <loops/summarystatsreduce.h>
|
|
|
|
#include <helpers/shape.h>
|
|
|
|
#include <helpers/TAD.h>
|
|
|
|
#include <helpers/ConstantTadHelper.h>
|
2019-11-13 15:15:18 +01:00
|
|
|
#include <execution/Threads.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
using namespace simdOps;
|
|
|
|
|
|
|
|
namespace functions {
|
|
|
|
namespace summarystats {
|
|
|
|
|
|
|
|
|
|
|
|
template <typename X, typename Y>
|
|
|
|
Y SummaryStatsReduce<X,Y>::execScalar(const int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
const bool biasCorrected,
|
|
|
|
const void *x, const Nd4jLong *xShapeInfo,
|
|
|
|
void *extraParams) {
|
2019-06-06 14:21:15 +02:00
|
|
|
RETURNING_DISPATCH_BY_OPNUM_TT(execScalar, PARAMS(biasCorrected, x, xShapeInfo, extraParams), SUMMARY_STATS_OPS);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename X, typename Y>
|
|
|
|
void SummaryStatsReduce<X,Y>::execScalar(const int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
const bool biasCorrected,
|
|
|
|
const void *x, const Nd4jLong *xShapeInfo,
|
|
|
|
void *extraParams,
|
|
|
|
void *z, const Nd4jLong *zShapeInfo) {
|
2019-06-15 13:34:34 +02:00
|
|
|
DISPATCH_BY_OPNUM_TT(execScalar, PARAMS(biasCorrected, x, xShapeInfo, extraParams, z, zShapeInfo), SUMMARY_STATS_OPS);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename X, typename Y>
|
|
|
|
void SummaryStatsReduce<X,Y>::exec(const int opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
const bool biasCorrected,
|
|
|
|
const void *x, const Nd4jLong *xShapeInfo,
|
|
|
|
void *extraParams,
|
|
|
|
void *z, const Nd4jLong *zShapeInfo,
|
|
|
|
int *dimension, int dimensionLength) {
|
2019-06-15 13:34:34 +02:00
|
|
|
DISPATCH_BY_OPNUM_TT(exec, PARAMS(biasCorrected, x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength), SUMMARY_STATS_OPS);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template <typename OpType >
|
|
|
|
void SummaryStatsReduce<X,Z>::execScalar(const bool biasCorrected,
|
2020-05-09 07:06:14 +02:00
|
|
|
const void *vx, const Nd4jLong *xShapeInfo,
|
|
|
|
void *vextraParams,
|
|
|
|
void *vz, const Nd4jLong *zShapeInfo) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
z[0] = execScalar<OpType>(biasCorrected, vx, xShapeInfo, vextraParams);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template <typename OpType >
|
2020-05-09 07:06:14 +02:00
|
|
|
Z SummaryStatsReduce<X,Z>::execScalar(const bool biasCorrected, const void *vx, const Nd4jLong *xShapeInfo, void *vextraParams) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto x = reinterpret_cast<const X *>(vx);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto extraParams = reinterpret_cast<Z *>(vextraParams);
|
|
|
|
|
|
|
|
SummaryStatsData<X> startingIndex;
|
|
|
|
startingIndex.initialize();
|
|
|
|
auto length = shape::length(xShapeInfo);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
uint xShapeInfoCast[MAX_RANK];
|
2020-03-02 10:49:41 +01:00
|
|
|
const bool canCast = sd::DataTypeUtils::castShapeInfo<uint>(xShapeInfo, xShapeInfoCast);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong i = 0; i < length; i++) {
|
2019-09-11 19:12:09 +02:00
|
|
|
auto xOffset = shape::indexOffset(i, xShapeInfo, xShapeInfoCast, canCast);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
SummaryStatsData<X> curr;
|
|
|
|
curr.initWithValue(x[xOffset]);
|
|
|
|
startingIndex = update(startingIndex, curr, extraParams);
|
|
|
|
}
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
return OpType::getValue(biasCorrected, startingIndex);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template <typename OpType >
|
|
|
|
void SummaryStatsReduce<X,Z>::exec(const bool biasCorrected,
|
2020-05-09 07:06:14 +02:00
|
|
|
const void *vx, const Nd4jLong *xShapeInfo,
|
|
|
|
void *vextraParams,
|
|
|
|
void *vz, const Nd4jLong *zShapeInfo,
|
|
|
|
int *dimension, int dimensionLength) {
|
|
|
|
|
|
|
|
auto x = reinterpret_cast<const X *>(vx);
|
2019-06-15 13:34:34 +02:00
|
|
|
auto z = reinterpret_cast<Z *>(vz);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto extraParams = reinterpret_cast<Z *>(vextraParams);
|
2020-02-26 19:12:19 +01:00
|
|
|
auto resultLength = shape::length(zShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
if(sd::ArrayOptions::arrayType(xShapeInfo) == sd::ArrayType::EMPTY) {
|
|
|
|
if(sd::ArrayOptions::arrayType(zShapeInfo) == sd::ArrayType::EMPTY)
|
2019-06-15 13:34:34 +02:00
|
|
|
return;
|
|
|
|
SummaryStatsData<X> comp;
|
|
|
|
comp.initWithValue(x[0]);
|
2019-11-13 15:15:18 +01:00
|
|
|
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong i = 0; i < resultLength; i++)
|
2019-06-15 13:34:34 +02:00
|
|
|
z[i] = OpType::getValue(biasCorrected, comp);
|
2019-06-06 14:21:15 +02:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
if (shape::isScalar(zShapeInfo)) {
|
|
|
|
z[0] = execScalar<OpType>(biasCorrected, x, xShapeInfo, extraParams);
|
|
|
|
return;
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
//no-op
|
|
|
|
if (dimensionLength < 1)
|
|
|
|
return;
|
|
|
|
|
2020-06-06 14:26:55 +02:00
|
|
|
auto tadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(xShapeInfo, dimension, dimensionLength);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
//pre squeezed: this is for keeping the pointer to the original
|
|
|
|
//shape information for tad offset
|
|
|
|
//the squeezed information doesn't render the right strides for
|
|
|
|
//tad offset
|
|
|
|
if (resultLength == 1 || dimensionLength == shape::rank(xShapeInfo) || tadPack.numberOfTads() == 1) {
|
|
|
|
z[0] = execScalar<OpType>(biasCorrected, x, xShapeInfo, extraParams);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto tadShapeShapeInfo = tadPack.primaryShapeInfo();
|
|
|
|
auto tadLength = shape::length(tadPack.primaryShapeInfo());
|
|
|
|
auto tadEWS = shape::elementWiseStride(tadPack.primaryShapeInfo());
|
|
|
|
auto tadOrder = shape::order(tadPack.primaryShapeInfo());
|
|
|
|
|
|
|
|
uint tadShapeShapeInfoCast[MAX_RANK];
|
2020-03-02 10:49:41 +01:00
|
|
|
const bool canCast = tadEWS == 1 && tadOrder == 'c' ? false : sd::DataTypeUtils::castShapeInfo<uint>(tadShapeShapeInfo, tadShapeShapeInfoCast);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2020-02-20 09:43:26 +01:00
|
|
|
for (auto r = start; r < stop; r++) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto tadOffsetForBlock = tadPack.primaryOffsets()[r];
|
|
|
|
auto tx = x + tadOffsetForBlock;
|
|
|
|
SummaryStatsData <X> comp;
|
|
|
|
comp.initWithValue(tx[0]);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
if (tadEWS == 1 && tadOrder == 'c') {
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong i = 1; i < tadLength; i++) {
|
2019-11-13 15:15:18 +01:00
|
|
|
SummaryStatsData <X> indexVal2;
|
|
|
|
indexVal2.initWithValue(tx[i]);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
comp = update(comp, OpType::op(indexVal2, extraParams), extraParams);
|
|
|
|
}
|
|
|
|
} else {
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong i = 1; i < tadLength; i++) {
|
2019-11-13 15:15:18 +01:00
|
|
|
auto xOffset = shape::indexOffset(i, tadShapeShapeInfo, tadShapeShapeInfoCast, canCast);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
SummaryStatsData <X> indexVal2;
|
|
|
|
indexVal2.initWithValue(tx[xOffset]);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
comp = update(comp, OpType::op(indexVal2, extraParams), extraParams);
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
z[r] = OpType::getValue(biasCorrected, comp);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
};
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_tad(func, 0, resultLength, 1);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT SummaryStatsReduce, , LIBND4J_TYPES, FLOAT_TYPES);
|
|
|
|
}
|
|
|
|
}
|