2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by raver on 4/9/2018.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "../indexreduce.h"
|
|
|
|
#include <op_boilerplate.h>
|
|
|
|
#include <Loops.h>
|
|
|
|
#include <types/types.h>
|
|
|
|
#include <helpers/ConstantTadHelper.h>
|
2019-11-13 15:04:59 +01:00
|
|
|
#include <execution/Threads.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include "../legacy_ops.h"
|
|
|
|
|
|
|
|
using namespace simdOps;
|
|
|
|
|
|
|
|
namespace functions {
|
|
|
|
namespace indexreduce {
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
2019-08-27 09:37:10 +02:00
|
|
|
template <typename X, typename Y>
|
|
|
|
Nd4jLong IndexReduce<X,Y>::execScalar( const int opNum, void *x, Nd4jLong *xShapeInfo, void *extraParams) {
|
|
|
|
RETURNING_DISPATCH_BY_OPNUM_TT(execScalar, PARAMS(x, xShapeInfo, extraParams), INDEX_REDUCE_OPS);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
2019-08-27 09:37:10 +02:00
|
|
|
template <typename X, typename Y>
|
|
|
|
void IndexReduce<X,Y>::exec(const int opNum,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *x, Nd4jLong *xShapeInfo,
|
|
|
|
void *extraParams,
|
2019-08-27 09:37:10 +02:00
|
|
|
void *z, Nd4jLong *zShapeInfo,
|
2019-06-15 13:34:34 +02:00
|
|
|
int *dimension, int dimensionLength,
|
2019-06-06 14:21:15 +02:00
|
|
|
Nd4jLong *tadShapeInfo, Nd4jLong *tadOffset) {
|
2019-11-13 15:04:59 +01:00
|
|
|
DISPATCH_BY_OPNUM_TT(exec, PARAMS(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, tadShapeInfo, tadOffset), INDEX_REDUCE_OPS);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
2019-08-27 09:37:10 +02:00
|
|
|
template <typename X, typename Y>
|
2019-06-06 14:21:15 +02:00
|
|
|
template<typename OpType>
|
2019-08-27 09:37:10 +02:00
|
|
|
Nd4jLong IndexReduce<X, Y>::execScalar(void *vx, Nd4jLong *xShapeInfo, void *vextraParams) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = reinterpret_cast<X *>(vx);
|
|
|
|
auto extraParams = reinterpret_cast<X *>(vextraParams);
|
|
|
|
|
|
|
|
//T startingVal = OpType::startingValue(x);
|
|
|
|
auto startingIndex = OpType::startingIndexValue(x);
|
|
|
|
auto len = shape::length(xShapeInfo);
|
|
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
|
|
nd4j::OmpLaunchHelper info(len);
|
|
|
|
|
|
|
|
uint xShapeInfoCast[MAX_RANK];
|
|
|
|
bool canCastX = nd4j::DataTypeUtils::castShapeInfo(xShapeInfo, xShapeInfoCast);
|
2019-11-13 15:04:59 +01:00
|
|
|
int maxThreads = nd4j::math::nd4j_min<int>(64, nd4j::Environment::getInstance()->maxThreads());
|
|
|
|
IndexValue<X> intermediatery[64];
|
|
|
|
for (int e = 0; e < maxThreads; e++)
|
|
|
|
intermediatery[e].index = -1;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
if (xEws == 1) {
|
2019-11-13 15:04:59 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
|
|
intermediatery[thread_id] = OpType::startingIndexValue(x);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:04:59 +01:00
|
|
|
for (auto i = start; i < stop; i += increment) {
|
|
|
|
IndexValue<X> curr(x[i], i);
|
|
|
|
intermediatery[thread_id] = OpType::update(intermediatery[thread_id], curr, extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:04:59 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
maxThreads = samediff::Threads::parallel_for(func, 0, len, 1, maxThreads);
|
|
|
|
|
|
|
|
for (int e = 0; e < maxThreads; e++)
|
|
|
|
startingIndex = OpType::update(startingIndex, intermediatery[e], extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
} else {
|
2019-11-13 15:04:59 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
|
|
intermediatery[thread_id] = OpType::startingIndexValue(x);
|
|
|
|
|
|
|
|
for (auto i = start; i < stop; i += increment) {
|
|
|
|
auto offset = shape::indexOffset(i, xShapeInfo, xShapeInfoCast, canCastX);
|
|
|
|
IndexValue<X> curr(x[offset], i);
|
|
|
|
intermediatery[thread_id] = OpType::update(intermediatery[thread_id], curr, extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:04:59 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
maxThreads = samediff::Threads::parallel_for(func, 0, len, 1, maxThreads);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:04:59 +01:00
|
|
|
for (int e = 0; e < maxThreads; e++)
|
|
|
|
startingIndex = OpType::update(startingIndex, intermediatery[e], extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
return startingIndex.index;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
2019-08-27 09:37:10 +02:00
|
|
|
template <typename X, typename Z>
|
2019-06-06 14:21:15 +02:00
|
|
|
template<typename OpType>
|
2019-08-27 09:37:10 +02:00
|
|
|
void IndexReduce<X, Z>::exec(void *vx, Nd4jLong *xShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
void *vextraParams,
|
2019-08-27 09:37:10 +02:00
|
|
|
void *vz, Nd4jLong *zShapeInfo,
|
2019-06-06 14:21:15 +02:00
|
|
|
int *dimension, int dimensionLength,
|
|
|
|
Nd4jLong *tadShapeInfo, Nd4jLong *tadOffset) {
|
|
|
|
|
|
|
|
auto x = reinterpret_cast<X *>(vx);
|
2019-08-27 09:37:10 +02:00
|
|
|
auto z = reinterpret_cast<Z *>(vz);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto extraParams = reinterpret_cast<X *>(vextraParams);
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
const Nd4jLong zLen = shape::length(zShapeInfo);
|
|
|
|
|
|
|
|
if(nd4j::ArrayOptions::arrayType(xShapeInfo) == nd4j::ArrayType::EMPTY) {
|
|
|
|
if(nd4j::ArrayOptions::arrayType(zShapeInfo) == nd4j::ArrayType::EMPTY)
|
|
|
|
return;
|
|
|
|
const auto indexValue = OpType::startingIndexValue(x);
|
2019-11-13 15:04:59 +01:00
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
for (uint i = 0; i < zLen; i++)
|
2019-11-13 15:04:59 +01:00
|
|
|
z[i] = (Z) indexValue.index;
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
if(shape::isScalar(zShapeInfo)) {
|
2019-08-27 09:37:10 +02:00
|
|
|
z[0] = (Z) execScalar<OpType>(x,xShapeInfo,extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto tadOnlyShapeInfo = tadShapeInfo;
|
|
|
|
Nd4jLong *tadOffsets = tadOffset;
|
|
|
|
|
|
|
|
if (tadOnlyShapeInfo == nullptr || tadOffsets == nullptr) {
|
|
|
|
if (dimensionLength < 1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(xShapeInfo, dimension, dimensionLength);
|
|
|
|
|
|
|
|
tadOnlyShapeInfo = tadPack.primaryShapeInfo();
|
|
|
|
tadOffsets = tadPack.primaryOffsets();
|
|
|
|
}
|
|
|
|
|
2019-08-27 09:37:10 +02:00
|
|
|
nd4j::IndexReductionLoops<X,Z>::template loopIndexReduce<OpType>(x, xShapeInfo, z, zShapeInfo, tadOnlyShapeInfo, tadOffsets, extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2019-08-27 09:37:10 +02:00
|
|
|
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT IndexReduce, , LIBND4J_TYPES, INDEXING_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
}
|
|
|
|
}
|