2019-09-11 20:50:28 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author saudet
|
2020-02-06 19:12:54 +01:00
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
2019-09-11 20:50:28 +02:00
|
|
|
//
|
|
|
|
|
2019-11-20 11:23:08 +01:00
|
|
|
#include <dnnl_types.h>
|
2020-02-06 19:12:54 +01:00
|
|
|
#include <ops/declarable/helpers/convolutions.h>
|
2019-09-11 20:50:28 +02:00
|
|
|
#include "mkldnnUtils.h"
|
|
|
|
|
2019-11-20 11:23:08 +01:00
|
|
|
using namespace dnnl;
|
2019-09-11 20:50:28 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2020-01-28 16:23:07 +01:00
|
|
|
namespace mkldnnUtils {
|
|
|
|
|
2020-03-12 16:25:29 +01:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
void getDims(const NDArray* array, const int rank, dnnl::memory::dims& mklDims){
|
2020-03-20 10:11:27 +01:00
|
|
|
|
2020-03-12 16:25:29 +01:00
|
|
|
std::vector<int64_t> vDims(rank);
|
|
|
|
for (auto i = 0; i < rank; i++) {
|
|
|
|
vDims[i] = array->sizeAt(i);
|
|
|
|
}
|
|
|
|
mklDims = dnnl::memory::dims(vDims);
|
|
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
dnnl::memory::format_tag getFormat(const int rank){
|
|
|
|
if (2 == rank) {
|
|
|
|
return dnnl::memory::format_tag::ab;
|
|
|
|
}
|
|
|
|
else if (3 == rank) {
|
|
|
|
return dnnl::memory::format_tag::abc;
|
|
|
|
}
|
|
|
|
else if (4 == rank) {
|
|
|
|
return dnnl::memory::format_tag::abcd;
|
|
|
|
}
|
|
|
|
else if (5 == rank) {
|
|
|
|
return dnnl::memory::format_tag::abcde;
|
|
|
|
}
|
|
|
|
else if (6 == rank) {
|
|
|
|
return dnnl::memory::format_tag::abcdef;
|
|
|
|
}
|
|
|
|
return dnnl::memory::format_tag::a; // 1 == dataSetRank
|
|
|
|
}
|
2020-03-20 10:11:27 +01:00
|
|
|
|
2020-03-12 16:25:29 +01:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
2020-03-20 10:11:27 +01:00
|
|
|
void setBlockStrides(const NDArray* array, dnnl::memory::desc& mklMd){
|
|
|
|
|
|
|
|
if (array->ews() != 1 || array->ordering() != 'c') {
|
|
|
|
mklMd.data.format_kind = dnnl_blocked; // overrides format
|
|
|
|
for (auto i = 0; i < array->rankOf(); ++i) {
|
|
|
|
mklMd.data.format_desc.blocking.strides[i] = array->strideAt(i);
|
2020-03-12 16:25:29 +01:00
|
|
|
}
|
2020-03-20 10:11:27 +01:00
|
|
|
}
|
2020-03-12 16:25:29 +01:00
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
2020-03-20 10:11:27 +01:00
|
|
|
void loadDataToMklStream(const NDArray* array, const dnnl::engine& engine, const dnnl::stream& stream, const dnnl::memory::desc& user_md, const dnnl::memory::desc& primitive_md,
|
|
|
|
dnnl::memory& arg) {
|
|
|
|
|
|
|
|
auto user_mem = dnnl::memory(user_md, engine, array->getBuffer());
|
|
|
|
const bool bReorder = primitive_md != user_mem.get_desc();
|
|
|
|
auto mkl_mem = bReorder ? dnnl::memory(primitive_md, engine) : user_mem;
|
|
|
|
if (bReorder)
|
|
|
|
dnnl::reorder(user_mem, mkl_mem).execute(stream, user_mem, mkl_mem);
|
|
|
|
arg = mkl_mem;
|
2020-03-12 16:25:29 +01:00
|
|
|
}
|
|
|
|
|
2020-02-06 19:12:54 +01:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
void poolingMKLDNN(const NDArray *input, NDArray *output,
|
|
|
|
const int kD, const int kH, const int kW,
|
|
|
|
const int sD, const int sH, const int sW,
|
|
|
|
const int pD, const int pH, const int pW,
|
|
|
|
const int isNCHW, const dnnl::algorithm mode) {
|
|
|
|
|
|
|
|
// unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for input
|
|
|
|
const int rank = input->rankOf();
|
|
|
|
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH;
|
|
|
|
dnnl::memory::dims strides, kernel, padding, padding_r, xDims, zDims;
|
|
|
|
dnnl::memory::format_tag xzFrmat;
|
|
|
|
|
|
|
|
const auto type = dnnl::memory::data_type::f32;
|
|
|
|
|
|
|
|
if(rank == 4) { // 2d
|
|
|
|
|
2020-03-20 10:11:27 +01:00
|
|
|
ops::ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
|
2020-02-06 19:12:54 +01:00
|
|
|
|
|
|
|
strides = { sH, sW };
|
|
|
|
kernel = { kH, kW };
|
|
|
|
padding = { pH, pW };
|
|
|
|
padding_r = { (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pW };
|
|
|
|
xDims = {bS, iC, iH, iW};
|
|
|
|
zDims = {bS, oC, oH, oW};
|
|
|
|
|
|
|
|
xzFrmat = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
|
|
}
|
|
|
|
else { // 3d
|
|
|
|
|
2020-03-20 10:11:27 +01:00
|
|
|
ops::ConvolutionUtils::getSizesAndIndexesConv3d(isNCHW, 0, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH);
|
2020-02-06 19:12:54 +01:00
|
|
|
|
|
|
|
strides = { sD, sH, sW };
|
|
|
|
kernel = { kD, kH, kW };
|
|
|
|
padding = { pD, pH, pW };
|
|
|
|
padding_r = { (oD - 1) * sD - iD + kD - pD, (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pW };
|
|
|
|
xDims = {bS, iC, iD, iH, iW};
|
|
|
|
zDims = {bS, oC, oD, oH, oW};
|
|
|
|
|
|
|
|
xzFrmat = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
|
|
|
|
}
|
|
|
|
|
|
|
|
// memory descriptors for arrays
|
|
|
|
|
|
|
|
// input
|
|
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, xzFrmat);
|
|
|
|
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFrmat);
|
|
|
|
if(input->ews() != 1 || input->ordering() != 'c') {
|
|
|
|
x_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
|
|
x_user_md.data.format_desc.blocking.strides[0] = input->strideAt(0);
|
|
|
|
x_user_md.data.format_desc.blocking.strides[1] = input->strideAt(isNCHW ? 1 :-1);
|
|
|
|
x_user_md.data.format_desc.blocking.strides[2] = input->strideAt(isNCHW ? 2 : 1);
|
|
|
|
x_user_md.data.format_desc.blocking.strides[3] = input->strideAt(isNCHW ? 3 : 2);
|
|
|
|
if(rank == 5)
|
|
|
|
x_user_md.data.format_desc.blocking.strides[4] = input->strideAt(isNCHW ? 4 : 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
// output
|
|
|
|
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any);
|
|
|
|
dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, type, xzFrmat);
|
|
|
|
if(output->ews() != 1 || output->ordering() != 'c') {
|
|
|
|
z_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
|
|
z_user_md.data.format_desc.blocking.strides[0] = output->strideAt(0);
|
|
|
|
z_user_md.data.format_desc.blocking.strides[1] = output->strideAt(isNCHW ? 1 :-1);
|
|
|
|
z_user_md.data.format_desc.blocking.strides[2] = output->strideAt(isNCHW ? 2 : 1);
|
|
|
|
z_user_md.data.format_desc.blocking.strides[3] = output->strideAt(isNCHW ? 3 : 2);
|
|
|
|
if(rank == 5)
|
|
|
|
z_user_md.data.format_desc.blocking.strides[4] = output->strideAt(isNCHW ? 4 : 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
|
|
|
|
// operation primitive description
|
|
|
|
dnnl::pooling_forward::desc op_desc(dnnl::prop_kind::forward_inference, mode, x_mkl_md, z_mkl_md, strides, kernel, padding, padding_r);
|
|
|
|
dnnl::pooling_forward::primitive_desc op_prim_desc(op_desc, engine);
|
|
|
|
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
|
|
|
|
// provide memory buffers and check whether reorder is required
|
|
|
|
|
|
|
|
// input
|
2020-03-20 10:11:27 +01:00
|
|
|
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
|
2020-02-06 19:12:54 +01:00
|
|
|
|
|
|
|
// output
|
|
|
|
auto z_user_mem = dnnl::memory(z_user_md, engine, output->getBuffer());
|
|
|
|
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
|
|
|
|
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
|
|
|
|
args[DNNL_ARG_DST] = z_mkl_mem;
|
|
|
|
|
|
|
|
// run calculations
|
|
|
|
dnnl::pooling_forward(op_prim_desc).execute(stream, args);
|
|
|
|
|
|
|
|
// reorder outputs if necessary
|
|
|
|
if (zReorder)
|
|
|
|
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem);
|
|
|
|
|
|
|
|
stream.wait();
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
void poolingBpMKLDNN(const NDArray *input, const NDArray *gradO, NDArray *gradI,
|
|
|
|
const int kD, const int kH, const int kW,
|
|
|
|
const int sD, const int sH, const int sW,
|
|
|
|
const int pD, const int pH, const int pW,
|
|
|
|
const int isNCHW, const dnnl::algorithm mode) {
|
|
|
|
|
|
|
|
// unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for input
|
|
|
|
|
|
|
|
const int rank = input->rankOf();
|
|
|
|
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH;
|
|
|
|
dnnl::memory::dims strides, kernel, padding, padding_r, xDims, zDims;
|
|
|
|
dnnl::memory::format_tag xzFrmat;
|
|
|
|
|
|
|
|
const auto type = dnnl::memory::data_type::f32;
|
|
|
|
|
|
|
|
if(rank == 4) { // 2d
|
|
|
|
|
2020-03-20 10:11:27 +01:00
|
|
|
ops::ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
|
2020-02-06 19:12:54 +01:00
|
|
|
|
|
|
|
strides = { sH, sW };
|
|
|
|
kernel = { kH, kW };
|
|
|
|
padding = { pH, pW };
|
|
|
|
padding_r = { (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pW };
|
|
|
|
xDims = {bS, iC, iH, iW};
|
|
|
|
zDims = {bS, oC, oH, oW};
|
|
|
|
|
|
|
|
xzFrmat = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
|
|
}
|
|
|
|
else { // 3d
|
|
|
|
|
2020-03-20 10:11:27 +01:00
|
|
|
ops::ConvolutionUtils::getSizesAndIndexesConv3d(isNCHW, 0, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH);
|
2020-02-06 19:12:54 +01:00
|
|
|
|
|
|
|
strides = { sD, sH, sW };
|
|
|
|
kernel = { kD, kH, kW };
|
|
|
|
padding = { pD, pH, pW };
|
|
|
|
padding_r = { (oD - 1) * sD - iD + kD - pD, (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pW };
|
|
|
|
xDims = {bS, iC, iD, iH, iW};
|
|
|
|
zDims = {bS, oC, oD, oH, oW};
|
|
|
|
|
|
|
|
xzFrmat = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
|
|
|
|
}
|
|
|
|
|
|
|
|
// memory descriptors for arrays
|
|
|
|
|
|
|
|
// input
|
|
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, xzFrmat);
|
|
|
|
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFrmat);
|
|
|
|
if(input->ews() != 1 || input->ordering() != 'c') {
|
|
|
|
x_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
|
|
x_user_md.data.format_desc.blocking.strides[0] = input->strideAt(0);
|
|
|
|
x_user_md.data.format_desc.blocking.strides[1] = input->strideAt(isNCHW ? 1 :-1);
|
|
|
|
x_user_md.data.format_desc.blocking.strides[2] = input->strideAt(isNCHW ? 2 : 1);
|
|
|
|
x_user_md.data.format_desc.blocking.strides[3] = input->strideAt(isNCHW ? 3 : 2);
|
|
|
|
if(rank == 5)
|
|
|
|
x_user_md.data.format_desc.blocking.strides[4] = input->strideAt(isNCHW ? 4 : 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
// gradO
|
|
|
|
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any);
|
|
|
|
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, type, xzFrmat);
|
|
|
|
if(gradO->ews() != 1 || gradO->ordering() != 'c') {
|
|
|
|
gradO_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
|
|
gradO_user_md.data.format_desc.blocking.strides[0] = gradO->strideAt(0);
|
|
|
|
gradO_user_md.data.format_desc.blocking.strides[1] = gradO->strideAt(isNCHW ? 1 :-1);
|
|
|
|
gradO_user_md.data.format_desc.blocking.strides[2] = gradO->strideAt(isNCHW ? 2 : 1);
|
|
|
|
gradO_user_md.data.format_desc.blocking.strides[3] = gradO->strideAt(isNCHW ? 3 : 2);
|
|
|
|
if(rank == 5)
|
|
|
|
gradO_user_md.data.format_desc.blocking.strides[4] = gradO->strideAt(isNCHW ? 4 : 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
// gradI
|
|
|
|
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
|
|
|
|
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, type, xzFrmat);
|
|
|
|
if(gradI->ews() != 1 || gradI->ordering() != 'c') {
|
|
|
|
gradI_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
|
|
gradI_user_md.data.format_desc.blocking.strides[0] = gradI->strideAt(0);
|
|
|
|
gradI_user_md.data.format_desc.blocking.strides[1] = gradI->strideAt(isNCHW ? 1 :-1);
|
|
|
|
gradI_user_md.data.format_desc.blocking.strides[2] = gradI->strideAt(isNCHW ? 2 : 1);
|
|
|
|
gradI_user_md.data.format_desc.blocking.strides[3] = gradI->strideAt(isNCHW ? 3 : 2);
|
|
|
|
if(rank == 5)
|
|
|
|
gradI_user_md.data.format_desc.blocking.strides[4] = gradI->strideAt(isNCHW ? 4 : 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
|
|
|
|
// forward primitive description
|
|
|
|
dnnl::pooling_forward::desc op_ff_desc(dnnl::prop_kind::forward, mode, x_mkl_md, gradO_mkl_md, strides, kernel, padding, padding_r);
|
|
|
|
dnnl::pooling_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
|
|
|
|
|
|
|
|
// backward primitive description
|
|
|
|
dnnl::pooling_backward::desc op_bp_desc(mode, gradI_mkl_md, gradO_mkl_md, strides, kernel, padding, padding_r);
|
|
|
|
dnnl::pooling_backward::primitive_desc op_bp_prim_desc(op_bp_desc, engine, op_ff_prim_desc);
|
|
|
|
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
|
|
|
|
// gradO
|
2020-03-20 10:11:27 +01:00
|
|
|
mkldnnUtils::loadDataToMklStream(gradO, engine, stream, gradO_user_md, op_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]);
|
|
|
|
|
2020-02-06 19:12:54 +01:00
|
|
|
// gradI
|
|
|
|
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->getBuffer());
|
|
|
|
const bool gradIReorder = op_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
|
|
|
|
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
|
|
|
|
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
|
|
|
|
|
|
|
|
if(mode == algorithm::pooling_max) {
|
|
|
|
|
|
|
|
// input
|
2020-03-20 10:11:27 +01:00
|
|
|
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
|
|
|
|
|
2020-02-06 19:12:54 +01:00
|
|
|
// z
|
|
|
|
auto z_mkl_mem = dnnl::memory(op_ff_prim_desc.dst_desc(), engine);
|
|
|
|
args[DNNL_ARG_DST] = z_mkl_mem;
|
|
|
|
|
|
|
|
// auxiliary memory allocation
|
|
|
|
auto workspace = dnnl::memory(op_ff_prim_desc.workspace_desc(), engine);
|
|
|
|
args[DNNL_ARG_WORKSPACE] = workspace;
|
|
|
|
|
|
|
|
// run forward calculations
|
|
|
|
dnnl::pooling_forward(op_ff_prim_desc).execute(stream, args);
|
|
|
|
}
|
|
|
|
|
|
|
|
// run backward calculations
|
|
|
|
dnnl::pooling_backward(op_bp_prim_desc).execute(stream, args);
|
|
|
|
|
|
|
|
|
|
|
|
// reorder gradI if necessary
|
|
|
|
if (gradIReorder)
|
|
|
|
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem);
|
|
|
|
|
|
|
|
stream.wait();
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void getMKLDNNMemoryDescLrn(const NDArray* src, const NDArray* diff_src, const NDArray* dst,
|
|
|
|
dnnl::memory::desc* lrn_src_md, dnnl::memory::desc* lrn_diff_src_md, dnnl::memory::desc* lrn_dst_md,
|
|
|
|
dnnl::memory::desc* user_src_md, dnnl::memory::desc* user_diff_src_md, dnnl::memory::desc* user_dst_md, int axis) {
|
|
|
|
const Nd4jLong* shape = src->getShapeInfo();
|
|
|
|
long rank = shape[0];
|
|
|
|
long dim1 = axis; // MKL-DNN supports only 1 axis, which has to be the "channel" one
|
|
|
|
long dim2 = axis >= 2 ? 1 : 2;
|
|
|
|
long dim3 = axis >= 3 ? 2 : 3;
|
|
|
|
dnnl::memory::dims lrn_src_tz = { (int)shape[1], (int)shape[dim1 + 1], rank > 2 ? (int)shape[dim2 + 1] : 1, rank > 3 ? (int)shape[dim3 + 1] : 1};
|
|
|
|
|
|
|
|
auto type = dnnl::memory::data_type::f32;
|
|
|
|
auto format = axis == 1 ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
|
|
auto supposed_to_be_any_format = format; // doesn't work with "any"
|
|
|
|
|
|
|
|
if (src != nullptr && src->getBuffer() != nullptr && lrn_src_md != nullptr) {
|
|
|
|
*lrn_src_md = dnnl::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_src_md = dnnl::memory::desc({ lrn_src_tz }, type, format);
|
|
|
|
user_src_md->data.format_kind = dnnl_blocked;
|
|
|
|
user_src_md->data.format_desc.blocking.strides[0] = src->stridesOf()[0];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[1] = src->stridesOf()[dim1];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[2] = rank > 2 ? src->stridesOf()[dim2] : 1;
|
|
|
|
user_src_md->data.format_desc.blocking.strides[3] = rank > 3 ? src->stridesOf()[dim3] : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (diff_src != nullptr && diff_src->getBuffer() != nullptr && lrn_diff_src_md != nullptr) {
|
|
|
|
*lrn_diff_src_md = dnnl::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_diff_src_md = dnnl::memory::desc({ lrn_src_tz }, type, format);
|
|
|
|
user_diff_src_md->data.format_kind = dnnl_blocked;
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[0] = diff_src->stridesOf()[0];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[1] = diff_src->stridesOf()[dim1];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[2] = rank > 2 ? diff_src->stridesOf()[dim2] : 1;
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[3] = rank > 3 ? diff_src->stridesOf()[dim3] : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dst != nullptr && dst->getBuffer() != nullptr && lrn_dst_md != nullptr) {
|
|
|
|
*lrn_dst_md = dnnl::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_dst_md = dnnl::memory::desc({ lrn_src_tz }, type, format);
|
|
|
|
user_dst_md->data.format_kind = dnnl_blocked;
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[0] = dst->stridesOf()[0];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[1] = dst->stridesOf()[dim1];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[2] = rank > 2 ? dst->stridesOf()[dim2] : 1;
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[3] = rank > 3 ? dst->stridesOf()[dim3] : 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
dnnl::engine& getEngine(void *ptr) {
|
|
|
|
auto eng = reinterpret_cast<dnnl::engine*>(ptr);
|
|
|
|
return *eng;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2020-01-28 16:23:07 +01:00
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void getMKLDNNMemoryDescPool2d(
|
|
|
|
int kH, int kW, int sH, int sW, int pH, int pW, int dH, int dW, int poolingMode, int extraParam0, bool isNCHW,
|
|
|
|
int bS, int iC, int iH, int iW, int oC, int oH, int oW,
|
|
|
|
const NDArray* src, const NDArray* diff_src, const NDArray* dst, dnnl::algorithm& algorithm,
|
|
|
|
dnnl::memory::desc* pool_src_md, dnnl::memory::desc* pool_diff_src_md, dnnl::memory::desc* pool_dst_md,
|
|
|
|
dnnl::memory::desc* user_src_md, dnnl::memory::desc* user_diff_src_md, dnnl::memory::desc* user_dst_md,
|
|
|
|
dnnl::memory::dims& pool_strides, dnnl::memory::dims& pool_kernel, dnnl::memory::dims& pool_padding, dnnl::memory::dims& pool_padding_r) {
|
|
|
|
dnnl::memory::dims pool_src_tz = { bS, iC, iH, iW };
|
|
|
|
dnnl::memory::dims pool_dst_tz = { bS, oC, oH, oW };
|
|
|
|
|
|
|
|
pool_strides = { sH, sW };
|
|
|
|
pool_kernel = { kH, kW };
|
|
|
|
pool_padding = { pH, pW };
|
|
|
|
pool_padding_r = { (oH - 1) * sH - iH + kH - pH,
|
|
|
|
(oW - 1) * sW - iW + kW - pW };
|
|
|
|
|
|
|
|
algorithm = poolingMode == 0 ? algorithm::pooling_max
|
|
|
|
: extraParam0 == 0 ? algorithm::pooling_avg_exclude_padding
|
|
|
|
: algorithm::pooling_avg_include_padding;
|
|
|
|
auto type = dnnl::memory::data_type::f32;
|
|
|
|
auto format = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
|
|
auto supposed_to_be_any_format = dnnl::memory::format_tag::nChw8c; // doesn't work with "any"
|
|
|
|
|
|
|
|
if (src != nullptr && src->getBuffer() != nullptr && pool_src_md != nullptr) {
|
|
|
|
*pool_src_md = dnnl::memory::desc({ pool_src_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_src_md = dnnl::memory::desc({ pool_src_tz }, type, format);
|
|
|
|
user_src_md->data.format_kind = dnnl_blocked; // overrides "format = isNCHW ? nchw : nhwc"
|
|
|
|
user_src_md->data.format_desc.blocking.strides[0] = src->stridesOf()[isNCHW ? 0 : 0];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[1] = src->stridesOf()[isNCHW ? 1 : 3];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[2] = src->stridesOf()[isNCHW ? 2 : 1];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[3] = src->stridesOf()[isNCHW ? 3 : 2];
|
2019-09-11 20:50:28 +02:00
|
|
|
}
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
if (diff_src != nullptr && diff_src->getBuffer() != nullptr && pool_diff_src_md != nullptr) {
|
|
|
|
*pool_diff_src_md = dnnl::memory::desc({ pool_src_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_diff_src_md = dnnl::memory::desc({ pool_src_tz }, type, format);
|
|
|
|
user_diff_src_md->data.format_kind = dnnl_blocked; // overrides "format = isNCHW ? nchw : nhwc"
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[0] = diff_src->stridesOf()[isNCHW ? 0 : 0];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[1] = diff_src->stridesOf()[isNCHW ? 1 : 3];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[2] = diff_src->stridesOf()[isNCHW ? 2 : 1];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[3] = diff_src->stridesOf()[isNCHW ? 3 : 2];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dst != nullptr && dst->getBuffer() != nullptr && pool_dst_md != nullptr) {
|
|
|
|
*pool_dst_md = dnnl::memory::desc({ pool_dst_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_dst_md = dnnl::memory::desc({ pool_dst_tz }, type, format);
|
|
|
|
user_dst_md->data.format_kind = dnnl_blocked; // overrides "format = isNCHW ? nchw : nhwc"
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[0] = dst->stridesOf()[isNCHW ? 0 : 0];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[1] = dst->stridesOf()[isNCHW ? 1 : 3];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[2] = dst->stridesOf()[isNCHW ? 2 : 1];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[3] = dst->stridesOf()[isNCHW ? 3 : 2];
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void getMKLDNNMemoryDescPool3d(
|
|
|
|
int kD, int kH, int kW, int sD, int sH, int sW, int pD, int pH, int pW, int dD, int dH, int dW, int poolingMode, int extraParam0, bool isNCDHW,
|
|
|
|
int bS, int iC, int iD, int iH, int iW, int oC, int oD, int oH, int oW,
|
|
|
|
const NDArray* src, const NDArray* diff_src, const NDArray* dst, dnnl::algorithm& algorithm,
|
|
|
|
dnnl::memory::desc* pool_src_md, dnnl::memory::desc* pool_diff_src_md, dnnl::memory::desc* pool_dst_md,
|
|
|
|
dnnl::memory::desc* user_src_md, dnnl::memory::desc* user_diff_src_md, dnnl::memory::desc* user_dst_md,
|
|
|
|
dnnl::memory::dims& pool_strides, dnnl::memory::dims& pool_kernel, dnnl::memory::dims& pool_padding, dnnl::memory::dims& pool_padding_r) {
|
|
|
|
dnnl::memory::dims pool_src_tz = { bS, iC, iD, iH, iW };
|
|
|
|
dnnl::memory::dims pool_dst_tz = { bS, oC, oD, oH, oW };
|
|
|
|
|
|
|
|
pool_strides = { sD, sH, sW };
|
|
|
|
pool_kernel = { kD, kH, kW };
|
|
|
|
pool_padding = { pD, pH, pW };
|
|
|
|
pool_padding_r = { (oD - 1) * sD - iD + kD - pD,
|
|
|
|
(oH - 1) * sH - iH + kH - pH,
|
|
|
|
(oW - 1) * sW - iW + kW - pW };
|
|
|
|
|
|
|
|
algorithm = poolingMode == 0 ? algorithm::pooling_max
|
|
|
|
: extraParam0 == 0 ? algorithm::pooling_avg_exclude_padding
|
|
|
|
: algorithm::pooling_avg_include_padding;
|
|
|
|
auto type = dnnl::memory::data_type::f32;
|
|
|
|
auto format = isNCDHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
|
|
|
|
auto supposed_to_be_any_format = dnnl::memory::format_tag::nCdhw8c; // doesn't work with "any"
|
|
|
|
|
|
|
|
if (src != nullptr && src->getBuffer() != nullptr && pool_src_md != nullptr) {
|
|
|
|
*pool_src_md = dnnl::memory::desc({ pool_src_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_src_md = dnnl::memory::desc({ pool_src_tz }, type, format);
|
|
|
|
user_src_md->data.format_kind = dnnl_blocked; // overrides "format = isNCDHW ? ncdhw : ndhwc"
|
|
|
|
user_src_md->data.format_desc.blocking.strides[0] = src->stridesOf()[isNCDHW ? 0 : 0];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[1] = src->stridesOf()[isNCDHW ? 1 : 4];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[2] = src->stridesOf()[isNCDHW ? 2 : 1];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[3] = src->stridesOf()[isNCDHW ? 3 : 2];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[4] = src->stridesOf()[isNCDHW ? 4 : 3];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (diff_src != nullptr && diff_src->getBuffer() != nullptr && pool_diff_src_md != nullptr) {
|
|
|
|
*pool_diff_src_md = dnnl::memory::desc({ pool_src_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_diff_src_md = dnnl::memory::desc({ pool_src_tz }, type, format);
|
|
|
|
user_diff_src_md->data.format_kind = dnnl_blocked; // overrides "format = isNCDHW ? ncdhw : ndhwc"
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[0] = diff_src->stridesOf()[isNCDHW ? 0 : 0];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[1] = diff_src->stridesOf()[isNCDHW ? 1 : 4];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[2] = diff_src->stridesOf()[isNCDHW ? 2 : 1];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[3] = diff_src->stridesOf()[isNCDHW ? 3 : 2];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[4] = diff_src->stridesOf()[isNCDHW ? 4 : 3];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dst != nullptr && dst->getBuffer() != nullptr && pool_dst_md != nullptr) {
|
|
|
|
*pool_dst_md = dnnl::memory::desc({ pool_dst_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_dst_md = dnnl::memory::desc({ pool_dst_tz }, type, format);
|
|
|
|
user_dst_md->data.format_kind = dnnl_blocked; // overrides "format = isNCDHW ? ncdhw : ndhwc"
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[0] = dst->stridesOf()[isNCDHW ? 0 : 0];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[1] = dst->stridesOf()[isNCDHW ? 1 : 4];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[2] = dst->stridesOf()[isNCDHW ? 2 : 1];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[3] = dst->stridesOf()[isNCDHW ? 3 : 2];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[4] = dst->stridesOf()[isNCDHW ? 4 : 3];
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void getMKLDNNMemoryDescConv2d(
|
|
|
|
int kH, int kW, int sH, int sW, int pH, int pW, int dH, int dW, const int paddingMode, bool isNCHW,
|
|
|
|
int bS, int iC, int iH, int iW, int oC, int oH, int oW, const NDArray* src, const NDArray* diff_src,
|
|
|
|
const NDArray* weights, const NDArray* diff_weights, const NDArray* bias, const NDArray* dst,
|
|
|
|
dnnl::memory::desc* conv_src_md, dnnl::memory::desc* conv_diff_src_md, dnnl::memory::desc* conv_weights_md,
|
|
|
|
dnnl::memory::desc* conv_diff_weights_md, dnnl::memory::desc* conv_bias_md, dnnl::memory::desc* conv_dst_md,
|
|
|
|
dnnl::memory::desc* user_src_md, dnnl::memory::desc* user_diff_src_md, dnnl::memory::desc* user_weights_md,
|
|
|
|
dnnl::memory::desc* user_diff_weights_md, dnnl::memory::desc* user_bias_md, dnnl::memory::desc* user_dst_md,
|
|
|
|
dnnl::memory::dims& conv_strides, dnnl::memory::dims& conv_padding, dnnl::memory::dims& conv_padding_r, dnnl::memory::dims& conv_dilation) {
|
|
|
|
dnnl::memory::dims conv_src_tz = { bS, iC, iH, iW };
|
|
|
|
dnnl::memory::dims conv_weights_tz = { oC, iC, kH, kW };
|
|
|
|
dnnl::memory::dims conv_bias_tz = { oC };
|
|
|
|
dnnl::memory::dims conv_dst_tz = { bS, oC, oH, oW };
|
|
|
|
|
|
|
|
const int pWSame = (paddingMode == 2 && dW > 1) ? ((oW - 1) * sW + (kW - 1) * dW + 1 - iW) / 2 : pW; // dH == 1 for causal mode in conv1d
|
|
|
|
|
|
|
|
conv_strides = { sH, sW };
|
|
|
|
conv_padding = { pH, pW };
|
|
|
|
conv_padding_r = { (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pWSame };
|
|
|
|
conv_dilation = { dH-1, dW-1};
|
|
|
|
|
|
|
|
auto type = dnnl::memory::data_type::f32;
|
|
|
|
auto format = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
|
|
auto formatw = dnnl::memory::format_tag::hwio;
|
|
|
|
|
|
|
|
if (src != nullptr && conv_src_md != nullptr) {
|
|
|
|
*conv_src_md = dnnl::memory::desc({ conv_src_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_src_md = dnnl::memory::desc({ conv_src_tz }, type, format);
|
|
|
|
user_src_md->data.format_kind = dnnl_blocked; // overrides "format = isNCHW ? nchw : nhwc"
|
|
|
|
user_src_md->data.format_desc.blocking.strides[0] = src->stridesOf()[isNCHW ? 0 : 0];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[1] = src->stridesOf()[isNCHW ? 1 : 3];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[2] = src->stridesOf()[isNCHW ? 2 : 1];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[3] = src->stridesOf()[isNCHW ? 3 : 2];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (diff_src != nullptr && conv_diff_src_md != nullptr) {
|
|
|
|
*conv_diff_src_md = dnnl::memory::desc({ conv_src_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_diff_src_md = dnnl::memory::desc({ conv_src_tz }, type, format);
|
|
|
|
user_diff_src_md->data.format_kind = dnnl_blocked; // overrides "format = isNCHW ? nchw : nhwc"
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[0] = diff_src->stridesOf()[isNCHW ? 0 : 0];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[1] = diff_src->stridesOf()[isNCHW ? 1 : 3];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[2] = diff_src->stridesOf()[isNCHW ? 2 : 1];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[3] = diff_src->stridesOf()[isNCHW ? 3 : 2];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (weights != nullptr && conv_weights_md != nullptr) {
|
|
|
|
*conv_weights_md = dnnl::memory::desc({ conv_weights_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_weights_md = dnnl::memory::desc({ conv_weights_tz }, type, formatw);
|
|
|
|
user_weights_md->data.format_kind = dnnl_blocked; // overrides "formatw = hwio"
|
|
|
|
user_weights_md->data.format_desc.blocking.strides[0] = weights->stridesOf()[3];
|
|
|
|
user_weights_md->data.format_desc.blocking.strides[1] = weights->stridesOf()[2];
|
|
|
|
user_weights_md->data.format_desc.blocking.strides[2] = weights->stridesOf()[0];
|
|
|
|
user_weights_md->data.format_desc.blocking.strides[3] = weights->stridesOf()[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (diff_weights != nullptr && conv_diff_weights_md != nullptr) {
|
|
|
|
*conv_diff_weights_md = dnnl::memory::desc({ conv_weights_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_diff_weights_md = dnnl::memory::desc({ conv_weights_tz }, type, formatw);
|
|
|
|
user_diff_weights_md->data.format_kind = dnnl_blocked; // overrides "formatw = hwio"
|
|
|
|
user_diff_weights_md->data.format_desc.blocking.strides[0] = diff_weights->stridesOf()[3];
|
|
|
|
user_diff_weights_md->data.format_desc.blocking.strides[1] = diff_weights->stridesOf()[2];
|
|
|
|
user_diff_weights_md->data.format_desc.blocking.strides[2] = diff_weights->stridesOf()[0];
|
|
|
|
user_diff_weights_md->data.format_desc.blocking.strides[3] = diff_weights->stridesOf()[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bias != nullptr && conv_bias_md != nullptr) {
|
|
|
|
*conv_bias_md = dnnl::memory::desc({ conv_bias_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_bias_md = dnnl::memory::desc({ conv_bias_tz }, type, dnnl::memory::format_tag::x);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dst != nullptr && conv_dst_md != nullptr) {
|
|
|
|
*conv_dst_md = dnnl::memory::desc({ conv_dst_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_dst_md = dnnl::memory::desc({ conv_dst_tz }, type, format);
|
|
|
|
user_dst_md->data.format_kind = dnnl_blocked; // overrides "format = isNCHW ? nchw : nhwc"
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[0] = dst->stridesOf()[isNCHW ? 0 : 0];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[1] = dst->stridesOf()[isNCHW ? 1 : 3];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[2] = dst->stridesOf()[isNCHW ? 2 : 1];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[3] = dst->stridesOf()[isNCHW ? 3 : 2];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void getMKLDNNMemoryDescConv3d(
|
|
|
|
int kD, int kH, int kW, int sD, int sH, int sW, int pD, int pH, int pW, int dD, int dH, int dW, bool paddingMode, bool isNCDHW,
|
|
|
|
int bS, int iC, int iD, int iH, int iW, int oC, int oD, int oH, int oW, const NDArray* src, const NDArray* diff_src,
|
|
|
|
const NDArray* weights, const NDArray* diff_weights, const NDArray* bias, const NDArray* dst,
|
|
|
|
dnnl::memory::desc* conv_src_md, dnnl::memory::desc* conv_diff_src_md, dnnl::memory::desc* conv_weights_md,
|
|
|
|
dnnl::memory::desc* conv_diff_weights_md, dnnl::memory::desc* conv_bias_md, dnnl::memory::desc* conv_dst_md,
|
|
|
|
dnnl::memory::desc* user_src_md, dnnl::memory::desc* user_diff_src_md, dnnl::memory::desc* user_weights_md,
|
|
|
|
dnnl::memory::desc* user_diff_weights_md, dnnl::memory::desc* user_bias_md, dnnl::memory::desc* user_dst_md,
|
|
|
|
dnnl::memory::dims& conv_strides, dnnl::memory::dims& conv_padding, dnnl::memory::dims& conv_padding_r, dnnl::memory::dims& conv_dilation) {
|
|
|
|
dnnl::memory::dims conv_src_tz = { bS, iC, iD, iH, iW };
|
|
|
|
dnnl::memory::dims conv_weights_tz = { oC, iC, kD, kH, kW };
|
|
|
|
dnnl::memory::dims conv_bias_tz = { oC };
|
|
|
|
dnnl::memory::dims conv_dst_tz = { bS, oC, oD, oH, oW };
|
|
|
|
|
|
|
|
conv_strides = { sD, sH, sW };
|
|
|
|
conv_padding = { pD, pH, pW };
|
|
|
|
conv_padding_r = { (oD - 1) * sD - iD + kD - pD, (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pW };
|
|
|
|
conv_dilation = { dD-1, dH-1, dW-1};
|
|
|
|
|
|
|
|
auto type = dnnl::memory::data_type::f32;
|
|
|
|
auto format = isNCDHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
|
|
|
|
auto formatw = dnnl::memory::format_tag::dhwio;
|
|
|
|
|
|
|
|
if (src != nullptr && conv_src_md != nullptr) {
|
|
|
|
*conv_src_md = dnnl::memory::desc({ conv_src_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_src_md = dnnl::memory::desc({ conv_src_tz }, type, format);
|
|
|
|
user_src_md->data.format_kind = dnnl_blocked; // overrides "format = isNCDHW ? ncdhw : ndhwc"
|
|
|
|
user_src_md->data.format_desc.blocking.strides[0] = src->stridesOf()[isNCDHW ? 0 : 0];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[1] = src->stridesOf()[isNCDHW ? 1 : 4];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[2] = src->stridesOf()[isNCDHW ? 2 : 1];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[3] = src->stridesOf()[isNCDHW ? 3 : 2];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[4] = src->stridesOf()[isNCDHW ? 4 : 3];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (diff_src != nullptr && conv_diff_src_md != nullptr) {
|
|
|
|
*conv_diff_src_md = dnnl::memory::desc({ conv_src_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_diff_src_md = dnnl::memory::desc({ conv_src_tz }, type, format);
|
|
|
|
user_diff_src_md->data.format_kind = dnnl_blocked; // overrides "format = isNCDHW ? ncdhw : ndhwc"
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[0] = diff_src->stridesOf()[isNCDHW ? 0 : 0];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[1] = diff_src->stridesOf()[isNCDHW ? 1 : 4];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[2] = diff_src->stridesOf()[isNCDHW ? 2 : 1];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[3] = diff_src->stridesOf()[isNCDHW ? 3 : 2];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[4] = diff_src->stridesOf()[isNCDHW ? 4 : 3];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (weights != nullptr && conv_weights_md != nullptr) {
|
|
|
|
*conv_weights_md = dnnl::memory::desc({ conv_weights_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_weights_md = dnnl::memory::desc({ conv_weights_tz }, type, formatw);
|
|
|
|
user_weights_md->data.format_kind = dnnl_blocked; // overrides "formatw = dhwio"
|
|
|
|
user_weights_md->data.format_desc.blocking.strides[0] = weights->stridesOf()[4];
|
|
|
|
user_weights_md->data.format_desc.blocking.strides[1] = weights->stridesOf()[3];
|
|
|
|
user_weights_md->data.format_desc.blocking.strides[2] = weights->stridesOf()[0];
|
|
|
|
user_weights_md->data.format_desc.blocking.strides[3] = weights->stridesOf()[1];
|
|
|
|
user_weights_md->data.format_desc.blocking.strides[4] = weights->stridesOf()[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (diff_weights != nullptr && conv_diff_weights_md != nullptr) {
|
|
|
|
*conv_diff_weights_md = dnnl::memory::desc({ conv_weights_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_diff_weights_md = dnnl::memory::desc({ conv_weights_tz }, type, formatw);
|
|
|
|
user_diff_weights_md->data.format_kind = dnnl_blocked; // overrides "formatw = dhwio"
|
|
|
|
user_diff_weights_md->data.format_desc.blocking.strides[0] = diff_weights->stridesOf()[4];
|
|
|
|
user_diff_weights_md->data.format_desc.blocking.strides[1] = diff_weights->stridesOf()[3];
|
|
|
|
user_diff_weights_md->data.format_desc.blocking.strides[2] = diff_weights->stridesOf()[0];
|
|
|
|
user_diff_weights_md->data.format_desc.blocking.strides[3] = diff_weights->stridesOf()[1];
|
|
|
|
user_diff_weights_md->data.format_desc.blocking.strides[4] = diff_weights->stridesOf()[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bias != nullptr && conv_bias_md != nullptr) {
|
|
|
|
*conv_bias_md = dnnl::memory::desc({ conv_bias_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_bias_md = dnnl::memory::desc({ conv_bias_tz }, type, dnnl::memory::format_tag::x);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dst != nullptr && conv_dst_md != nullptr) {
|
|
|
|
*conv_dst_md = dnnl::memory::desc({ conv_dst_tz }, type, dnnl::memory::format_tag::any);
|
|
|
|
*user_dst_md = dnnl::memory::desc({ conv_dst_tz }, type, format);
|
|
|
|
user_dst_md->data.format_kind = dnnl_blocked; // overrides "format = isNCDHW ? ncdhw : ndhwc"
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[0] = dst->stridesOf()[isNCDHW ? 0 : 0];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[1] = dst->stridesOf()[isNCDHW ? 1 : 4];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[2] = dst->stridesOf()[isNCDHW ? 2 : 1];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[3] = dst->stridesOf()[isNCDHW ? 3 : 2];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[4] = dst->stridesOf()[isNCDHW ? 4 : 3];
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2020-02-06 19:12:54 +01:00
|
|
|
void getMKLDNNMemoryDescBatchNorm(const NDArray* src, const NDArray* diff_src, const NDArray* dst,
|
|
|
|
dnnl::memory::desc* batchnorm_src_md, dnnl::memory::desc* batchnorm_diff_src_md, dnnl::memory::desc* batchnorm_dst_md,
|
|
|
|
dnnl::memory::desc* user_src_md, dnnl::memory::desc* user_diff_src_md, dnnl::memory::desc* user_dst_md, int axis) {
|
2020-01-28 16:23:07 +01:00
|
|
|
const Nd4jLong* shape = src->getShapeInfo();
|
2020-02-06 19:12:54 +01:00
|
|
|
Nd4jLong rank = shape[0];
|
|
|
|
Nd4jLong dim1 = axis; // MKL-DNN supports only 1 axis, which has to be the "channel" one
|
|
|
|
Nd4jLong dim2 = axis >= 2 ? 1 : 2;
|
|
|
|
Nd4jLong dim3 = axis >= 3 ? 2 : 3;
|
|
|
|
dnnl::memory::dims batchnorm_src_tz = { (int)shape[1], (int)shape[dim1 + 1], rank > 2 ? (int)shape[dim2 + 1] : 1, rank > 3 ? (int)shape[dim3 + 1] : 1};
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
auto type = dnnl::memory::data_type::f32;
|
2020-02-06 19:12:54 +01:00
|
|
|
auto format = dnnl::memory::format_tag::nchw;
|
|
|
|
auto supposed_to_be_any_format = dnnl::memory::format_tag::nChw8c; // doesn't work with "any"
|
2020-01-28 16:23:07 +01:00
|
|
|
|
2020-02-06 19:12:54 +01:00
|
|
|
if (src != nullptr && src->getBuffer() != nullptr && batchnorm_src_md != nullptr) {
|
|
|
|
*batchnorm_src_md = dnnl::memory::desc({ batchnorm_src_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_src_md = dnnl::memory::desc({ batchnorm_src_tz }, type, format);
|
|
|
|
user_src_md->data.format_kind = dnnl_blocked; // overrides format
|
2020-01-28 16:23:07 +01:00
|
|
|
user_src_md->data.format_desc.blocking.strides[0] = src->stridesOf()[0];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[1] = src->stridesOf()[dim1];
|
|
|
|
user_src_md->data.format_desc.blocking.strides[2] = rank > 2 ? src->stridesOf()[dim2] : 1;
|
|
|
|
user_src_md->data.format_desc.blocking.strides[3] = rank > 3 ? src->stridesOf()[dim3] : 1;
|
|
|
|
}
|
|
|
|
|
2020-02-06 19:12:54 +01:00
|
|
|
if (diff_src != nullptr && diff_src->getBuffer() != nullptr && batchnorm_diff_src_md != nullptr) {
|
|
|
|
*batchnorm_diff_src_md = dnnl::memory::desc({ batchnorm_src_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_diff_src_md = dnnl::memory::desc({ batchnorm_src_tz }, type, format);
|
|
|
|
user_diff_src_md->data.format_kind = dnnl_blocked; // overrides format
|
2020-01-28 16:23:07 +01:00
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[0] = diff_src->stridesOf()[0];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[1] = diff_src->stridesOf()[dim1];
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[2] = rank > 2 ? diff_src->stridesOf()[dim2] : 1;
|
|
|
|
user_diff_src_md->data.format_desc.blocking.strides[3] = rank > 3 ? diff_src->stridesOf()[dim3] : 1;
|
|
|
|
}
|
|
|
|
|
2020-02-06 19:12:54 +01:00
|
|
|
if (dst != nullptr && dst->getBuffer() != nullptr && batchnorm_dst_md != nullptr) {
|
|
|
|
*batchnorm_dst_md = dnnl::memory::desc({ batchnorm_src_tz }, type, supposed_to_be_any_format);
|
|
|
|
*user_dst_md = dnnl::memory::desc({ batchnorm_src_tz }, type, format);
|
|
|
|
user_dst_md->data.format_kind = dnnl_blocked; // overrides format
|
2020-01-28 16:23:07 +01:00
|
|
|
user_dst_md->data.format_desc.blocking.strides[0] = dst->stridesOf()[0];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[1] = dst->stridesOf()[dim1];
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[2] = rank > 2 ? dst->stridesOf()[dim2] : 1;
|
|
|
|
user_dst_md->data.format_desc.blocking.strides[3] = rank > 3 ? dst->stridesOf()[dim3] : 1;
|
|
|
|
}
|
2020-02-06 19:12:54 +01:00
|
|
|
};
|
|
|
|
*/
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
}
|
2019-09-11 20:50:28 +02:00
|
|
|
}
|