130 lines
4.5 KiB
C++
130 lines
4.5 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author George A. Shulinok <sgazeos@gmail.com>
|
||
|
//
|
||
|
|
||
|
#include <system/op_boilerplate.h>
|
||
|
#if NOT_EXCLUDED(OP_adjust_contrast)
|
||
|
|
||
|
#include <ops/declarable/headers/parity_ops.h>
|
||
|
#include <array/NDArrayFactory.h>
|
||
|
|
||
|
namespace sd {
|
||
|
namespace ops {
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////
|
||
|
CONFIGURABLE_OP_IMPL(adjust_contrast, 1, 1, true, 0, 0) {
|
||
|
|
||
|
auto input = INPUT_VARIABLE(0);
|
||
|
auto output = OUTPUT_VARIABLE(0);
|
||
|
|
||
|
// just skip op if input is empty
|
||
|
if (input->isEmpty())
|
||
|
return Status::OK();
|
||
|
|
||
|
REQUIRE_TRUE(block.numT() > 0 || block.width() > 1, 0, "ADJUST_CONTRAST: Scale factor required");
|
||
|
REQUIRE_TRUE(input->rankOf() > 2, 0, "ADJUST_CONTRAST: op expects rank of input array to be >= 3, but got %i instead", input->rankOf());
|
||
|
// REQUIRE_TRUE(input->sizeAt(-1) == 3, 0, "ADJUST_CONTRAST: operation expects image with 3 channels (R, G, B), but got %i instead", input->sizeAt(-1));
|
||
|
|
||
|
NDArray* factor = nullptr;
|
||
|
|
||
|
if(block.width() > 1)
|
||
|
factor = INPUT_VARIABLE(1);
|
||
|
else {
|
||
|
factor = new NDArray(output->dataType(), block.launchContext());
|
||
|
factor->p(0, T_ARG(0));
|
||
|
}
|
||
|
|
||
|
// fill up axes vector first
|
||
|
std::vector<int> axes(input->rankOf() - 1);
|
||
|
for (auto i = 0; i < axes.size(); ++i)
|
||
|
axes[i] = i;
|
||
|
|
||
|
// mean as reduction for last dimension set
|
||
|
auto mean = input->reduceAlongDimension(reduce::Mean, axes);
|
||
|
|
||
|
// this is contrast calculation
|
||
|
output->assign((*input - mean) * (*factor) + mean);
|
||
|
|
||
|
if(block.width() == 1)
|
||
|
delete factor;
|
||
|
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
DECLARE_TYPES(adjust_contrast) {
|
||
|
getOpDescriptor()->setAllowedInputTypes(sd::DataType::ANY)
|
||
|
->setAllowedOutputTypes({ALL_FLOATS})
|
||
|
->setSameMode(true);
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////
|
||
|
CONFIGURABLE_OP_IMPL(adjust_contrast_v2, 1, 1, true, 0, 0) {
|
||
|
|
||
|
auto input = INPUT_VARIABLE(0);
|
||
|
auto output = OUTPUT_VARIABLE(0);
|
||
|
|
||
|
// just skip op if input is empty
|
||
|
if (input->isEmpty())
|
||
|
return Status::OK();
|
||
|
|
||
|
REQUIRE_TRUE(input->rankOf() > 2, 0, "ADJUST_CONTRAST_V2: op expects rank of input array to be >= 3, but got %i instead", input->rankOf());
|
||
|
// REQUIRE_TRUE(input->sizeAt(-1) == 3, 0, "ADJUST_CONTRAST_V2: operation expects image with 3 channels (R, G, B), but got %i instead", input->sizeAt(-1));
|
||
|
REQUIRE_TRUE(block.numT() > 0 || block.width() > 1, 0, "ADJUST_CONTRAST_V2: Scale factor required");
|
||
|
|
||
|
NDArray* factor = nullptr;
|
||
|
auto size = input->sizeAt(-2) * input->sizeAt(-3);
|
||
|
auto channels = input->sizeAt(-1);
|
||
|
auto batch = input->lengthOf() / (size * channels);
|
||
|
auto input3D = input->reshape(input->ordering(), {batch, size, channels});
|
||
|
auto output3D = input->reshape(input->ordering(), {batch, size, channels});
|
||
|
|
||
|
if(block.width() > 1)
|
||
|
factor = INPUT_VARIABLE(1);
|
||
|
else {
|
||
|
factor = new NDArray(output->dataType(), block.launchContext());
|
||
|
factor->p(0, T_ARG(0));
|
||
|
}
|
||
|
|
||
|
std::vector<int> axes({1}); // dim 1 of pseudoresult
|
||
|
|
||
|
// mean as reduction for last dimension set over size (dim 1) of result3D
|
||
|
auto mean = input3D.reduceAlongDimension(reduce::Mean, axes);
|
||
|
|
||
|
// result as (x - mean) * factor + mean
|
||
|
auto temp = input3D.ulike();
|
||
|
input3D.applyBroadcast(broadcast::Subtract, {0, 2}, mean, temp);
|
||
|
temp.applyScalarArr(scalar::Multiply, *factor, temp);
|
||
|
temp.applyBroadcast(broadcast::Add, {0, 2}, mean, output3D);
|
||
|
output->assign(output3D);
|
||
|
if(block.width() == 1)
|
||
|
delete factor;
|
||
|
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
DECLARE_TYPES(adjust_contrast_v2) {
|
||
|
getOpDescriptor()->setAllowedInputTypes(sd::DataType::ANY)
|
||
|
->setAllowedOutputTypes({ALL_FLOATS})
|
||
|
->setSameMode(true);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|