/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 16.07.2018
#include <helpers/GradCheck.h>
#include <array/NDArrayFactory.h>
namespace sd {
//////////////////////////////////////////////////////////////////////////
void GradCheck::fillGradArrays(const LossFunc loss, const std::vector<NDArray*>& gradArrs) {
const int numInGradArrs = gradArrs.size();
// fill input gradient arrays in accordance to type of loss function
switch(loss) {
case MEAN:
for(int i = 0; i < numInGradArrs; ++i)
*gradArrs[i] = 1. / gradArrs[i]->lengthOf();
break;
case SUM:
*gradArrs[i] = 1.;
default:
throw std::invalid_argument("GradCheck::fillGradArrays: invalid type of loss function !");
}
bool GradCheck::checkGrad(ops::DeclarableOp& opFF, ops::DeclarableOp& opBP, const OpArgsHolder& argsHolderFF, const OpArgsHolder& argsHolderBP,
const std::vector<bool>& whatArrsToCheck, const std::vector<double>& idxRange, const LossFunc loss) {
const int numInArrsFF = argsHolderFF.getNumInArrs(); // at the same time numInArrsFF = number of output arrays in opBP
const int numInGradArrsBP = argsHolderBP.getNumInArrs() - numInArrsFF; // because argsHolderBP.getNumInArrs() = numInArrsFF + numInGradArrsBP
const std::vector<NDArray*>& inArrsFF = argsHolderFF.getInArrs();
const std::vector<NDArray*>& inArrsBP = argsHolderBP.getInArrs();
// fill input gradient arrays in accordance to kind of loss function
fillGradArrays(loss, std::vector<NDArray*>(&inArrsBP[numInArrsFF], &inArrsBP[numInArrsFF + numInGradArrsBP]));
// back prop pass
ResultSet outArrsBP = opBP.execute(argsHolderBP); // number of output arrays in back prop = numInArrsFF;
NDArray tmpScalar(sd::DataType::DOUBLE, inArrsFF[0]->getContext()); // scalar = 0
for(int i = 0; i < numInArrsFF; ++i) { // loop through input array
if(!whatArrsToCheck.empty() && static_cast<bool>(whatArrsToCheck[i]) == false)
continue;
const Nd4jLong idxStart = static_cast<Nd4jLong>(idxRange[0] * inArrsFF[i]->lengthOf());
const Nd4jLong idxEnd = static_cast<Nd4jLong>(idxRange[1] * inArrsFF[i]->lengthOf());
for(Nd4jLong j = idxStart; j < idxEnd; ++j) { // loop through all elements for current array
const double orig = inArrsFF[i]->e<double>(j);
// add epsilon, feed forward
inArrsFF[i]->p<double>(j, orig + EPSILON);
ResultSet outArrsFF = opFF.execute(argsHolderFF);
int numOutArrs = outArrsFF.size();
double scorePlus = 0.;
for(int k = 0; k < numOutArrs; ++k) { // loop through output arrays
if(loss == SUM)
outArrsFF.at(k)->reduceNumber(reduce::Sum, tmpScalar);
else
outArrsFF.at(k)->reduceNumber(reduce::Mean, tmpScalar);
scorePlus += tmpScalar.e<double>(0);
// subtract epsilon, feed forward
inArrsFF[i]->p<double>(j, orig - EPSILON);
outArrsFF = opFF.execute(argsHolderFF);
double scoreMinus = 0.;
scoreMinus += tmpScalar.e<double>(0);
// restore initial element value
inArrsFF[i]->p<double>(j, orig);
// calculate numerical gradient
const double numericalGrad = (scorePlus - scoreMinus) / (2 * EPSILON);
if(std::isnan(numericalGrad) || std::isinf(numericalGrad)) {
printf("GradCheck::checkGrad: got wrong value for numerical gradient for input array # %i and its element at position %lld ! \n", i, j);
throw std::runtime_error("");
// get analytical gradient
const double analyticGrad = outArrsBP.at(i)->e<double>(j);
if(std::isnan(analyticGrad) || std::isinf(analyticGrad)) {
printf("GradCheck::checkGrad: got wrong value for analytical gradient for input array # %i and its element at position %lld ! \n", i, j);
// printf("%lld: num = %.15f, ana = %.15f\n", j, numericalGrad, analyticGrad);
// calculate relative error
double relError;
if(numericalGrad == 0. && analyticGrad == 0.)
relError = 0.;
relError = math::nd4j_abs<double>(analyticGrad - numericalGrad) / (math::nd4j_abs<double>(analyticGrad) + math::nd4j_abs<double>(numericalGrad));
// verify result
if(relError > MAXRELERR || std::isnan(relError)) {
if(math::nd4j_abs<double>(analyticGrad - numericalGrad) < MINABSERR)
printf("numericalGrad = %.15f, analyticGrad = %.15f \n", numericalGrad, analyticGrad);
printf("GradCheck::checkGrad: got RELERROR = %f > MAXRELERROR(%f) for input array # %i and its element at position %lld ! \n", relError, MAXRELERR, i, j);
return false;
return true;