2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by Yurii Shyrma on 18.12.2017
|
|
|
|
//
|
|
|
|
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <helpers/householder.h>
|
|
|
|
#include <helpers/biDiagonalUp.h>
|
|
|
|
#include <array/NDArrayFactory.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2019-06-06 14:21:15 +02:00
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
2020-03-02 10:49:41 +01:00
|
|
|
BiDiagonalUp::BiDiagonalUp(const NDArray& matrix): _HHmatrix(sd::NDArrayFactory::create(matrix.ordering(), {matrix.sizeAt(0), matrix.sizeAt(1)}, matrix.dataType(), matrix.getContext())),
|
|
|
|
_HHbidiag(sd::NDArrayFactory::create(matrix.ordering(), {matrix.sizeAt(1), matrix.sizeAt(1)}, matrix.dataType(), matrix.getContext())) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
// input validation
|
|
|
|
if(matrix.rankOf() != 2 || matrix.isScalar())
|
|
|
|
throw std::runtime_error("ops::helpers::biDiagonalizeUp constructor: input array must be 2D matrix !");
|
|
|
|
|
|
|
|
_HHmatrix.assign(&matrix);
|
|
|
|
_HHbidiag.assign(0.);
|
|
|
|
|
|
|
|
evalData();
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void BiDiagonalUp::_evalData() {
|
|
|
|
|
|
|
|
const auto rows = _HHmatrix.sizeAt(0);
|
|
|
|
const auto cols = _HHmatrix.sizeAt(1);
|
|
|
|
|
|
|
|
if(rows < cols)
|
|
|
|
throw std::runtime_error("ops::helpers::BiDiagonalizeUp::evalData method: this procedure is applicable only for input matrix with rows >= cols !");
|
|
|
|
|
|
|
|
NDArray* bottomRightCorner(nullptr), *column(nullptr), *row(nullptr);
|
|
|
|
T coeff, normX;
|
|
|
|
|
|
|
|
T _x, _y;
|
|
|
|
|
2020-02-28 15:04:45 +01:00
|
|
|
for(Nd4jLong i = 0; i < cols-1; ++i ) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
// evaluate Householder matrix nullifying columns
|
|
|
|
column = new NDArray(_HHmatrix({i,rows, i,i+1}, true));
|
|
|
|
|
|
|
|
_x = _HHmatrix.e<T>(i,i);
|
|
|
|
_y = _HHbidiag.e<T>(i,i);
|
|
|
|
|
|
|
|
Householder<T>::evalHHmatrixDataI(*column, _x, _y);
|
|
|
|
|
|
|
|
_HHmatrix.p<T>(i, i, _x);
|
|
|
|
_HHbidiag.p<T>(i, i, _y);
|
|
|
|
|
|
|
|
// multiply corresponding matrix block on householder matrix from the left: P * bottomRightCorner
|
|
|
|
bottomRightCorner = new NDArray(_HHmatrix({i,rows, i+1,cols}, true)); // {i, cols}
|
|
|
|
Householder<T>::mulLeft(*bottomRightCorner, _HHmatrix({i+1,rows, i,i+1}, true), _HHmatrix.e<T>(i,i));
|
|
|
|
|
|
|
|
delete bottomRightCorner;
|
|
|
|
delete column;
|
|
|
|
|
|
|
|
if(i == cols-2)
|
|
|
|
continue; // do not apply right multiplying at last iteration
|
|
|
|
|
|
|
|
// evaluate Householder matrix nullifying rows
|
|
|
|
row = new NDArray(_HHmatrix({i,i+1, i+1,cols}, true));
|
|
|
|
|
|
|
|
_x = _HHmatrix.e<T>(i,i+1);
|
|
|
|
_y = _HHbidiag.e<T>(i,i+1);
|
|
|
|
|
|
|
|
Householder<T>::evalHHmatrixDataI(*row, _x, _y);
|
|
|
|
|
|
|
|
_HHmatrix.p<T>(i, i+1, _x);
|
|
|
|
_HHbidiag.p<T>(i, i+1, _y);
|
|
|
|
|
|
|
|
// multiply corresponding matrix block on householder matrix from the right: bottomRightCorner * P
|
|
|
|
bottomRightCorner = new NDArray(_HHmatrix({i+1,rows, i+1,cols}, true)); // {i, rows}
|
|
|
|
|
|
|
|
Householder<T>::mulRight(*bottomRightCorner, _HHmatrix({i,i+1, i+2,cols}, true), _HHmatrix.e<T>(i,i+1));
|
|
|
|
|
|
|
|
delete bottomRightCorner;
|
|
|
|
delete row;
|
|
|
|
}
|
|
|
|
|
|
|
|
row = new NDArray(_HHmatrix({cols-2,cols-1, cols-1,cols}, true));
|
|
|
|
|
|
|
|
_x = _HHmatrix.e<T>(cols-2,cols-1);
|
|
|
|
_y = _HHbidiag.e<T>(cols-2,cols-1);
|
|
|
|
|
|
|
|
Householder<T>::evalHHmatrixDataI(*row, _x, _y);
|
|
|
|
|
|
|
|
_HHmatrix.p<T>(cols-2,cols-1, _x);
|
|
|
|
_HHbidiag.p<T>(cols-2,cols-1, _y);
|
|
|
|
|
|
|
|
delete row;
|
|
|
|
|
|
|
|
column = new NDArray(_HHmatrix({cols-1,rows, cols-1,cols}, true));
|
|
|
|
|
|
|
|
_x = _HHmatrix.e<T>(cols-1,cols-1);
|
|
|
|
_y = _HHbidiag.e<T>(cols-1,cols-1);
|
|
|
|
|
|
|
|
Householder<T>::evalHHmatrixDataI(*column, _x, _y);
|
|
|
|
|
|
|
|
_HHmatrix.p<T>(cols-1, cols-1, _x);
|
|
|
|
_HHbidiag.p<T>(cols-1, cols-1, _y);
|
|
|
|
|
|
|
|
delete column;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void BiDiagonalUp::evalData() {
|
|
|
|
auto xType = _HHmatrix.dataType();
|
|
|
|
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, _evalData, ();, FLOAT_TYPES);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
|
|
HHsequence BiDiagonalUp::makeHHsequence_(const char type) const {
|
|
|
|
|
|
|
|
if(type == 'u') {
|
|
|
|
|
|
|
|
const int diagSize = _HHbidiag.sizeAt(0);
|
|
|
|
auto colOfCoeffs = NDArrayFactory::create(_HHmatrix.ordering(), {diagSize, 1}, _HHmatrix.dataType(), _HHmatrix.getContext());
|
|
|
|
|
|
|
|
for(int i = 0; i < diagSize; ++i)
|
|
|
|
colOfCoeffs.p(i, _HHmatrix.e<T>(i,i));
|
|
|
|
|
|
|
|
return HHsequence(_HHmatrix, colOfCoeffs, type);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
|
|
|
const int diagUpSize = _HHbidiag.sizeAt(0) - 1;
|
|
|
|
NDArray colOfCoeffs = NDArrayFactory::create(_HHmatrix.ordering(), {diagUpSize, 1}, _HHmatrix.dataType(), _HHmatrix.getContext());
|
|
|
|
|
|
|
|
for(int i = 0; i < diagUpSize; ++i)
|
|
|
|
colOfCoeffs.p(i, _HHmatrix.e<T>(i,i+1));
|
|
|
|
|
|
|
|
HHsequence result(_HHmatrix, colOfCoeffs, type);
|
|
|
|
result._diagSize = diagUpSize;
|
|
|
|
result._shift = 1;
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
HHsequence BiDiagonalUp::makeHHsequence(const char type) const {
|
|
|
|
auto xType = _HHmatrix.dataType();
|
|
|
|
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, return makeHHsequence_, (type);, FLOAT_TYPES);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void BiDiagonalUp::_evalData, (), FLOAT_TYPES);
|
|
|
|
BUILD_SINGLE_TEMPLATE(template HHsequence BiDiagonalUp::makeHHsequence_, (const char type) const, FLOAT_TYPES);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|