243 lines
7.7 KiB
C
243 lines
7.7 KiB
C
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author raver119@gmail.com
|
||
|
//
|
||
|
|
||
|
#ifndef LIBND4J_RANDOM_OPS_H
|
||
|
#define LIBND4J_RANDOM_OPS_H
|
||
|
|
||
|
#ifdef __CUDACC__
|
||
|
#define random_def __device__ __host__ inline static
|
||
|
#else
|
||
|
#define random_def inline static
|
||
|
#endif
|
||
|
|
||
|
// since we can't inherit/overwrite static methods - we just define default impls
|
||
|
#define method_idx random_def T op(Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator* rng, T *extraParams) { return -1.0f; }
|
||
|
#define method_X random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator* rng, T *extraParams) { return -2.0f; }
|
||
|
#define method_XY random_def T op(T valueX, T valueY, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator* rng, T *extraParams) { return -3.0f; }
|
||
|
|
||
|
#define no_exec_special static const bool requiresSpecial = false; static inline void specialOp(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) { }
|
||
|
|
||
|
#ifdef __CUDACC__
|
||
|
#define no_exec_special_cuda __device__ static inline void specialOpCuda(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) { }
|
||
|
#else
|
||
|
#define no_exec_special_cuda
|
||
|
#endif
|
||
|
|
||
|
#include <helpers/helper_generator.h>
|
||
|
#include <graph/RandomGenerator.h>
|
||
|
#include <array/DataTypeUtils.h>
|
||
|
|
||
|
namespace randomOps {
|
||
|
|
||
|
/**
|
||
|
* This Op merges two arrays per-element, if probability meets threshold
|
||
|
*/
|
||
|
template<typename T>
|
||
|
class ProbablisticMerge {
|
||
|
public:
|
||
|
|
||
|
no_exec_special
|
||
|
no_exec_special_cuda
|
||
|
|
||
|
method_idx
|
||
|
method_X
|
||
|
|
||
|
random_def T op(T valueX, T valueY, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
T threshold = extraParams[0];
|
||
|
T randVal = helper->relativeT<T>(idx);
|
||
|
|
||
|
return randVal <= threshold ? valueY : valueX;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* This Op produces random values within specified boundaries. Disribution is uniform
|
||
|
*/
|
||
|
template<typename T>
|
||
|
class UniformDistribution {
|
||
|
public:
|
||
|
|
||
|
no_exec_special
|
||
|
no_exec_special_cuda
|
||
|
|
||
|
method_XY
|
||
|
method_X
|
||
|
|
||
|
random_def T op(Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
return helper->relativeT<T>(idx, extraParams[0], extraParams[1]);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* This op produces single bernoulli trial
|
||
|
*/
|
||
|
template <typename T>
|
||
|
class BernoulliDistribution {
|
||
|
public:
|
||
|
no_exec_special
|
||
|
no_exec_special_cuda
|
||
|
|
||
|
method_XY
|
||
|
|
||
|
random_def T op(Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
return extraParams[0] >= helper->relativeT<T>(idx) ? (T) 1.0f : (T) 0.0f;
|
||
|
}
|
||
|
|
||
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
return valueX >= helper->relativeT<T>(idx) ? (T) 1.0f : (T) 0.0f;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* This op produces single bernoulli trial
|
||
|
*/
|
||
|
template <typename T>
|
||
|
class ExponentialDistribution {
|
||
|
public:
|
||
|
no_exec_special
|
||
|
no_exec_special_cuda
|
||
|
|
||
|
method_XY
|
||
|
|
||
|
random_def T op(Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
T lambda = extraParams[0];
|
||
|
T x = helper->relativeT(idx, -nd4j::DataTypeUtils::template max<T>() / 10 , nd4j::DataTypeUtils::template max<T>() / 10);
|
||
|
return x <= (T)0.f ? (T)0.f : (T)1.f - nd4j::math::nd4j_pow<T, T, T>((T) M_E, -(lambda * x));
|
||
|
}
|
||
|
|
||
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
T lambda = extraParams[0];
|
||
|
return valueX <= (T)0.f ? (T)0.f : (T)1.f - nd4j::math::nd4j_pow<T, T, T>((T) M_E, -(lambda * valueX));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Basic DropOut/DropConnect Op
|
||
|
*/
|
||
|
template<typename T>
|
||
|
class DropOut {
|
||
|
public:
|
||
|
|
||
|
no_exec_special
|
||
|
no_exec_special_cuda
|
||
|
|
||
|
method_idx
|
||
|
method_XY
|
||
|
|
||
|
// please note: prob is chance to retain original value
|
||
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
T randVal = helper->relativeT<T>(idx);
|
||
|
return randVal >= extraParams[0] ? (T) 0.0f : valueX;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename T>
|
||
|
class AlphaDropOut {
|
||
|
public:
|
||
|
|
||
|
no_exec_special
|
||
|
no_exec_special_cuda
|
||
|
|
||
|
method_idx
|
||
|
method_XY
|
||
|
|
||
|
// please note: prob is chance to retain original value
|
||
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
T randVal = helper->relativeT<T>(idx);
|
||
|
// extraParams[0] == p
|
||
|
// [1] = a
|
||
|
// [2] = b
|
||
|
// [3] = alphaPrime
|
||
|
return randVal >= extraParams[0] ? (T) extraParams[1] * extraParams[3] + extraParams[2] : extraParams[1] * valueX + extraParams[2];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Inverted DropOut implementation, used in DL4j
|
||
|
*/
|
||
|
template<typename T>
|
||
|
class DropOutInverted {
|
||
|
public:
|
||
|
|
||
|
no_exec_special
|
||
|
no_exec_special_cuda
|
||
|
|
||
|
method_idx
|
||
|
method_XY
|
||
|
|
||
|
// please note: prob is chance to retain original value
|
||
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
T prob = extraParams[0];
|
||
|
T randVal = helper->relativeT<T>(idx);
|
||
|
return randVal >= prob ? (T) 0.0f : valueX / prob;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
class Linspace {
|
||
|
public:
|
||
|
|
||
|
no_exec_special
|
||
|
no_exec_special_cuda
|
||
|
|
||
|
method_X
|
||
|
method_XY
|
||
|
|
||
|
random_def T op(Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
T from = extraParams[0];
|
||
|
T to = extraParams[1];
|
||
|
T step = extraParams[2];
|
||
|
|
||
|
if (step == static_cast<T>(0.0f)) {
|
||
|
step = (T) idx / ((T)length - (T) 1.0f);
|
||
|
return from * ((T) 1.0f - step) + step * to;
|
||
|
}
|
||
|
return from + (idx * step);
|
||
|
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
class ExponentialDistributionInv { // inverse exponential distribution
|
||
|
public:
|
||
|
no_exec_special
|
||
|
no_exec_special_cuda
|
||
|
|
||
|
method_XY
|
||
|
|
||
|
random_def T op(Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
T lambda = extraParams[0];
|
||
|
T x = helper->relativeT(idx, nd4j::DataTypeUtils::template min<T>(), (T)1.f);
|
||
|
return -nd4j::math::nd4j_log<T, T>((T)1.f - x) / lambda;
|
||
|
}
|
||
|
|
||
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
|
||
|
T lambda = extraParams[0];
|
||
|
return -nd4j::math::nd4j_log<T, T>((T)1.f - valueX) / lambda; // valueX must be within (0, 1]
|
||
|
}
|
||
|
};
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif //LIBND4J_RANDOM_OPS_H
|