73 lines
1.8 KiB
Java
Raw Normal View History

2019-06-06 15:21:15 +03:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.optimize.api;
import org.deeplearning4j.nn.api.Model;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.List;
import java.util.Map;
/**
* A no-op implementation of a {@link TrainingListener} to be used as a starting point for custom training callbacks.
*
* Extend this and selectively override the methods you will actually use.
*/
public abstract class BaseTrainingListener implements TrainingListener {
@Override
public void onEpochStart(Model model) {
//No op
}
@Override
public void onEpochEnd(Model model) {
//No op
}
@Override
public void onForwardPass(Model model, List<INDArray> activations) {
//No op
}
@Override
public void onForwardPass(Model model, Map<String, INDArray> activations) {
//No op
}
@Override
public void onGradientCalculation(Model model) {
//No op
}
@Override
public void onBackwardPass(Model model) {
//No op
}
@Override
public void iterationDone(Model model, int iteration, int epoch) {
//No op
}
}