cavis/libnd4j/tests_cpu/layers_tests/DeclarableOpsTests12.cpp

2479 lines
108 KiB
C++
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver on 8/4/2018.
//
#include "testlayers.h"
#include <ops/declarable/CustomOperations.h>
#include <NDArray.h>
#include <ops/ops.h>
#include <GradCheck.h>
#include <ConstantTadHelper.h>
#include <helpers/PointersManager.h>
using namespace nd4j;
class DeclarableOpsTests12 : public testing::Test {
public:
DeclarableOpsTests12() {
printf("\n");
fflush(stdout);
}
};
TEST_F(DeclarableOpsTests12, test_any_validation_1) {
auto x = NDArrayFactory::create<double>('c', {2, 1}, {1.0, 2.0});
auto y = NDArrayFactory::create<int>('c', {2}, {1, 0});
nd4j::ops::transpose op;
auto result = op.execute({&x, &y}, {}, {});
ASSERT_EQ(Status::OK(), result->status());
auto z = result->at(0);
ASSERT_EQ(x.dataType(), z->dataType());
delete result;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cosine_distance_loss_grad_test1) {
NDArray labels('c', {2,4}, {0,1,1,0,1,0,1,0});
NDArray predictions('c', {2,4}, nd4j::DataType::DOUBLE);
NDArray weights('c', {2,1}, nd4j::DataType::DOUBLE);
NDArray dLdpExp('c', {2,4}, {-0. , -0.5, -0.5, -0., -0.5, -0. , -0.5, -0.});
NDArray dLdwExp('c', {2,1}, {1.2, -0.2});
predictions.linspace(-0.4, 0.2);
weights.assign(0.5);
nd4j::ops::cosine_distance_loss_grad op;
auto results = op.execute({&predictions, &weights, &labels}, {}, {0, -1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *dLdp = results->at(0);
auto *dLdw = results->at(1);
auto *dLdl = results->at(2);
ASSERT_TRUE(dLdpExp.isSameShape(dLdp));
ASSERT_TRUE(dLdpExp.equalsTo(dLdp));
ASSERT_TRUE(dLdwExp.isSameShape(dLdw));
ASSERT_TRUE(dLdwExp.equalsTo(dLdw));
delete results;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cosine_distance_loss_grad_test2) {
NDArray labels('c', {2,4}, {-0.1, 0.3, 2, -1.4, 2.5, -3, 1.2, 2.2});
NDArray predictions('c', {2,4}, nd4j::DataType::DOUBLE);
NDArray weights('c', {1,4}, nd4j::DataType::DOUBLE);
NDArray dLdpExp('c', {2,4}, {0.05, -0.15, -1. , 0.7 ,-1.25, 1.5 , -0.6 , -1.1 });
NDArray dLdwExp('c', {1,4}, {-0.04, 2.86, 0.04, -0.92});
NDArray dLdlExp('c', {2,4}, {0.2, 0.1, 0. , -0.1, -0.2, -0.3, -0.4, -0.5});
predictions.linspace(-0.4, 0.2);
weights.assign(0.5);
nd4j::ops::cosine_distance_loss_grad op;
auto results = op.execute({&predictions, &weights, &labels}, {}, {0, 0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *dLdp = results->at(0);
auto *dLdw = results->at(1);
auto *dLdl = results->at(2);
ASSERT_TRUE(dLdpExp.isSameShape(dLdp));
ASSERT_TRUE(dLdpExp.equalsTo(dLdp));
ASSERT_TRUE(dLdwExp.isSameShape(dLdw));
ASSERT_TRUE(dLdwExp.equalsTo(dLdw));
ASSERT_TRUE(dLdlExp.isSameShape(dLdl));
ASSERT_TRUE(dLdlExp.equalsTo(dLdl));
delete results;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cosine_distance_loss_grad_test3) {
NDArray labels('c', {4}, {-0.1, 0.3, 2, -1.4});
NDArray predictions('c', {4}, nd4j::DataType::DOUBLE);
NDArray weights('c', {1}, nd4j::DataType::DOUBLE);
NDArray dLdpExp('c', {4}, {0.05, -0.15, -1., 0.7});
NDArray dLdwExp('c', {1}, {1.3});
NDArray dLdlExp('c', {4}, {0.2, 0.1, -0. , -0.1});
predictions.linspace(-0.4, 0.2);
weights.assign(0.5);
nd4j::ops::cosine_distance_loss_grad op;
auto results = op.execute({&predictions, &weights, &labels}, {}, {0, 0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *dLdp = results->at(0);
auto *dLdw = results->at(1);
auto *dLdl = results->at(2);
ASSERT_TRUE(dLdpExp.isSameShape(dLdp));
ASSERT_TRUE(dLdpExp.equalsTo(dLdp));
ASSERT_TRUE(dLdwExp.isSameShape(dLdw));
ASSERT_TRUE(dLdwExp.equalsTo(dLdw));
ASSERT_TRUE(dLdlExp.isSameShape(dLdl));
ASSERT_TRUE(dLdlExp.equalsTo(dLdl));
delete results;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cosine_distance_loss_grad_test4) {
NDArray labels('c', {1,4}, {-0.1, 0.3, 2, -1.4});
NDArray predictions('c', {1,4}, nd4j::DataType::DOUBLE);
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
NDArray weights('c', {}, {0.}, nd4j::DataType::DOUBLE);
2019-06-06 14:21:15 +02:00
NDArray dLdpExp('c', {1,4}, {0.05, -0.15, -1., 0.7});
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
NDArray dLdwExp('c', {}, {1.3});
2019-06-06 14:21:15 +02:00
NDArray dLdlExp('c', {1,4}, {0.2, 0.1, -0. , -0.1});
predictions.linspace(-0.4, 0.2);
weights.assign(0.5);
nd4j::ops::cosine_distance_loss_grad op;
auto results = op.execute({&predictions, &weights, &labels}, {}, {1, 1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *dLdp = results->at(0);
auto *dLdw = results->at(1);
auto *dLdl = results->at(2);
ASSERT_TRUE(dLdpExp.isSameShape(dLdp));
ASSERT_TRUE(dLdpExp.equalsTo(dLdp));
ASSERT_TRUE(dLdwExp.isSameShape(dLdw));
ASSERT_TRUE(dLdwExp.equalsTo(dLdw));
ASSERT_TRUE(dLdlExp.isSameShape(dLdl));
ASSERT_TRUE(dLdlExp.equalsTo(dLdl));
delete results;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cosine_distance_loss_grad_test5) {
NDArray labels('c', {4}, {-0.1, 0.3, 2, -1.4}, nd4j::DataType::DOUBLE);
NDArray predictions('c', {4}, nd4j::DataType::DOUBLE);
NDArray weights('c', {1,1}, nd4j::DataType::DOUBLE);
NDArray dLdpExp('c', {4}, {0.1, -0.3, -2. , 1.4});
NDArray dLdwExp('c', {1,1}, {0.});
NDArray dLdlExp('c', {4}, {0.4, 0.2, -0. , -0.2});
predictions.linspace(-0.4, 0.2);
weights = 0.5;
nd4j::ops::cosine_distance_loss_grad op;
auto results = op.execute({&predictions, &weights, &labels}, {}, {2, 0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *dLdp = results->at(0);
auto *dLdw = results->at(1);
auto *dLdl = results->at(2);
ASSERT_TRUE(dLdpExp.isSameShape(dLdp));
ASSERT_TRUE(dLdpExp.equalsTo(dLdp));
ASSERT_TRUE(dLdwExp.isSameShape(dLdw));
ASSERT_TRUE(dLdwExp.equalsTo(dLdw));
ASSERT_TRUE(dLdlExp.isSameShape(dLdl));
ASSERT_TRUE(dLdlExp.equalsTo(dLdl));
delete results;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cosine_distance_loss_grad_test6) {
NDArray labels('c', {4,1}, {-0.1, 0.3, 2, -1.4}, nd4j::DataType::DOUBLE);
NDArray predictions('c', {4,1}, nd4j::DataType::DOUBLE);
NDArray weights('c', {4,1}, nd4j::DataType::DOUBLE);
NDArray dLdpExp('c', {4,1}, {0.0125, -0.0375, -0.25 , 0.175});
NDArray dLdwExp('c', {4,1}, {0.24 , 0.265, 0.25 , 0.32});
NDArray dLdlExp('c', {4,1}, {0.05 , 0.025, -0. , -0.025});
predictions.linspace(-0.4, 0.2);
weights = 0.5;
nd4j::ops::cosine_distance_loss_grad op;
auto results = op.execute({&predictions, &weights, &labels}, {}, {3, 1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *dLdp = results->at(0);
auto *dLdw = results->at(1);
auto *dLdl = results->at(2);
ASSERT_TRUE(dLdpExp.isSameShape(dLdp));
ASSERT_TRUE(dLdpExp.equalsTo(dLdp));
ASSERT_TRUE(dLdwExp.isSameShape(dLdw));
ASSERT_TRUE(dLdwExp.equalsTo(dLdw));
ASSERT_TRUE(dLdlExp.isSameShape(dLdl));
ASSERT_TRUE(dLdlExp.equalsTo(dLdl));
delete results;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cosine_distance_loss_grad_test7) {
NDArray labels('c', {2,3,4}, {-0.1, 0.3, 2, -1.4, 2.5, -3, 1.2, 2.2,-0.1, 0.3, 2, -3.4, 2.5, -3, 1.2, 2.2,-0.2, 0.3, 2, -1.4, 2.7, -3, 1.2, 4.2});
NDArray predictions('c', {2,3,4}, nd4j::DataType::DOUBLE);
NDArray weights('c', {1,3,1}, nd4j::DataType::DOUBLE);
NDArray dLdpExp('c', {2,3,4}, {0.00833, -0.025 , -0.16667, 0.11667,-0.20833, 0.25 , -0.1 , -0.18333, 0.00833, -0.025 , -0.16667, 0.28333,
-0.20833, 0.25 , -0.1 , -0.18333, 0.01667, -0.025 , -0.16667, 0.11667,-0.225 , 0.25 , -0.1 , -0.35 });
NDArray dLdwExp('c', {1,3,1}, {0.50444, 0.89778, -1.40222});
NDArray dLdlExp('c', {2,3,4}, {0.03333, 0.01667, -0. , -0.01667,-0.03333, -0.05 , -0.06667, -0.08333,-0.1, -0.11667, -0.13333, -0.15,
-0.16667, -0.18333, -0.2 , -0.21667,-0.23333, -0.25 , -0.26667, -0.28333,-0.3, -0.31667, -0.33333, -0.35 });
predictions.linspace(-0.4, 0.2);
weights = 0.5;
nd4j::ops::cosine_distance_loss_grad op;
auto results = op.execute({&predictions, &weights, &labels}, {}, {2, 0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *dLdp = results->at(0);
auto *dLdw = results->at(1);
auto *dLdl = results->at(2);
ASSERT_TRUE(dLdpExp.isSameShape(dLdp));
ASSERT_TRUE(dLdpExp.equalsTo(dLdp));
ASSERT_TRUE(dLdwExp.isSameShape(dLdw));
ASSERT_TRUE(dLdwExp.equalsTo(dLdw));
ASSERT_TRUE(dLdlExp.isSameShape(dLdl));
ASSERT_TRUE(dLdlExp.equalsTo(dLdl));
delete results;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cosine_distance_loss_grad_test8) {
NDArray labels('c', {2,3,4}, {-0.1, 0.3, 2, -1.4, 2.5, -3, 1.2, 2.2,-0.1, 0.3, 2, -3.4, 2.5, -3, 1.2, 2.2,-0.2, 0.3, 2, -1.4, 2.7, -3, 1.2, 4.2});
NDArray predictions('c', {2,3,4}, nd4j::DataType::DOUBLE);
NDArray weights('c', {2,1,1}, nd4j::DataType::DOUBLE);
NDArray dLdpExp('c', {2,3,4}, {0.00625, -0.01875, -0.125 , 0.0875,-0.15625, 0.1875 , -0.075 , -0.1375, 0.00625, -0.01875, -0.125 , 0.2125,
-0.15625, 0.1875 , -0.075 , -0.1375, 0.0125 , -0.01875, -0.125 , 0.0875,-0.16875, 0.1875 , -0.075 , -0.2625});
NDArray dLdwExp('c', {2,1,1}, {0.57, -3.2175});
NDArray dLdlExp('c', {2,3,4}, {0.025, 0.0125, -0. , -0.0125,-0.025, -0.0375, -0.05, -0.0625,-0.075, -0.0875, -0.1 , -0.1125,
-0.125, -0.1375, -0.15, -0.1625,-0.175, -0.1875, -0.2 , -0.2125,-0.225, -0.2375, -0.25, -0.2625});
predictions.linspace(-0.4, 0.2);
weights = 0.5;
nd4j::ops::cosine_distance_loss_grad op;
auto results = op.execute({&predictions, &weights, &labels}, {}, {3, 1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *dLdp = results->at(0);
auto *dLdw = results->at(1);
auto *dLdl = results->at(2);
ASSERT_TRUE(dLdpExp.isSameShape(dLdp));
ASSERT_TRUE(dLdpExp.equalsTo(dLdp));
ASSERT_TRUE(dLdwExp.isSameShape(dLdw));
ASSERT_TRUE(dLdwExp.equalsTo(dLdw));
ASSERT_TRUE(dLdlExp.isSameShape(dLdl));
ASSERT_TRUE(dLdlExp.equalsTo(dLdl));
delete results;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cosine_distance_loss_grad_test9) {
NDArray labels('c', {2,3,4}, {-0.1, 0.3, 2, -1.4, 2.5, -3, 1.2, 2.2,-0.1, 0.3, 2, -3.4, 2.5, -3, 1.2, 2.2,-0.2, 0.3, 2, -1.4, 2.7, -3, 1.2, 4.2});
NDArray predictions('c', {2,3,4}, nd4j::DataType::DOUBLE);
NDArray weights('c', {2,3,1}, nd4j::DataType::DOUBLE);
NDArray dLdpExp('c', {2,3,4}, {0.05, -0.15, -1. , 0.7,-1.25, 1.5 , -0.6 , -1.1, 0.05, -0.15, -1. , 1.7,
-1.25, 1.5 , -0.6 , -1.1, 0.1 , -0.15, -1. , 0.7,-1.35, 1.5 , -0.6 , -2.1});
NDArray dLdwExp('c', {2,3,1}, {1.3 , -1.36, 3.62, -6. , -0.98,-19.76});
NDArray dLdlExp('c', {2,3,4}, {0.2, 0.1, -0. , -0.1,-0.2, -0.3, -0.4, -0.5,-0.6, -0.7, -0.8, -0.9,
-1. , -1.1, -1.2, -1.3,-1.4, -1.5, -1.6, -1.7,-1.8, -1.9, -2. , -2.1});
predictions.linspace(-0.4, 0.2);
weights = 0.5;
nd4j::ops::cosine_distance_loss_grad op;
auto results = op.execute({&predictions, &weights, &labels}, {}, {0, 2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *dLdp = results->at(0);
auto *dLdw = results->at(1);
auto *dLdl = results->at(2);
ASSERT_TRUE(dLdpExp.isSameShape(dLdp));
ASSERT_TRUE(dLdpExp.equalsTo(dLdp));
ASSERT_TRUE(dLdwExp.isSameShape(dLdw));
ASSERT_TRUE(dLdwExp.equalsTo(dLdw));
ASSERT_TRUE(dLdlExp.isSameShape(dLdl));
ASSERT_TRUE(dLdlExp.equalsTo(dLdl));
delete results;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, hinge_loss_14) {
NDArray logits('c', {3,4}, nd4j::DataType::DOUBLE);
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
NDArray weights('c', {}, {1.});
2019-06-06 14:21:15 +02:00
NDArray labels('c', {3,4}, {0,1,1,0,1,0,1,0,1,0,1,0});
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
NDArray output('c', {}, {0.}, nd4j::DataType::DOUBLE);
2019-06-06 14:21:15 +02:00
logits.linspace(1.);
weights.assign(1.);
nd4j::ops::hinge_loss op;
Nd4jStatus status = op.execute({&logits, &weights, &labels}, {&output}, {}, {1}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
ASSERT_TRUE(output.e<double>(0) == 47.);
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, TestDivideBP_1) {
NDArray x('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray y = NDArrayFactory::create<double>(2.);
NDArray eps('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray output1('c', {3, 4}, nd4j::DataType::DOUBLE);
NDArray output2(nd4j::DataType::DOUBLE);
x.linspace(2., 2.);
eps.linspace(1.);
nd4j::ops::divide_bp op;
Nd4jStatus status = op.execute({&x, &y, &eps}, {&output1, &output2}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
output1.printIndexedBuffer("DivideBP X out");
output2.printIndexedBuffer("DivideBP Y out");
//ASSERT_TRUE(output.e<double>(0) == 47.);
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, TestDivideBP_2) {
NDArray x('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray y = NDArrayFactory::create<double>('c', {3,4});
NDArray eps('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray exp1('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray exp2('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray output1('c', {3, 4}, nd4j::DataType::DOUBLE);
NDArray output2('c', {3, 4}, nd4j::DataType::DOUBLE);
exp1.assign(1.);
exp2.assign(-2.);
x.linspace(2., 2.);
y.linspace(1.);
eps.linspace(1.);
nd4j::ops::divide_bp op;
Nd4jStatus status = op.execute({&x, &y, &eps}, {&output1, &output2}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
output1.printIndexedBuffer("2DivideBP X out");
output2.printIndexedBuffer("2DivideBP Y out");
ASSERT_TRUE(output1.equalsTo(exp1));
ASSERT_TRUE(output2.equalsTo(exp2));
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, TestReverseDivideBP_1) {
NDArray x('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray y = NDArrayFactory::create<double>(2.);
NDArray eps('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray output1('c', {3, 4}, nd4j::DataType::DOUBLE);
NDArray output2(nd4j::DataType::DOUBLE);
x.linspace(2., 2.);
eps.linspace(1.);
nd4j::ops::reversedivide_bp op;
Nd4jStatus status = op.execute({&y, &x, &eps}, {&output2, &output1}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
output1.printIndexedBuffer("RDivideBP X out");
output2.printIndexedBuffer("RDivideBP Y out");
//ASSERT_TRUE(output.e<double>(0) == 47.);
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, TestReverseDivideBP_2) {
NDArray x('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray y = NDArrayFactory::create<double>('c', {3,4});
NDArray eps('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray exp1('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray exp2('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray output1('c', {3, 4}, nd4j::DataType::DOUBLE);
NDArray output2('c', {3, 4}, nd4j::DataType::DOUBLE);
x.linspace(2., 2.);
y.linspace(1.);
eps.linspace(1.);
exp1.assign(1.);
exp2.assign(-2.);
nd4j::ops::reversedivide_bp op;
Nd4jStatus status = op.execute({&y, &x, &eps}, {&output2, &output1}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
output1.printIndexedBuffer("2RDivideBP X out");
output2.printIndexedBuffer("2RDivideBP Y out");
ASSERT_TRUE(output1.equalsTo(exp1));
ASSERT_TRUE(output2.equalsTo(exp2));
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, TestSliceBP_1) {
NDArray x('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray eps('c', {2,2}, nd4j::DataType::DOUBLE);
NDArray exp('c', {3,4}, {0., 0., 0., 0., 0., 1.,1., 0., 0., 1., 1., 0.});
//NDArray exp2('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray output('c', {3, 4}, nd4j::DataType::DOUBLE);
//NDArray output2('c', {3, 4}, nd4j::DataType::DOUBLE);
output.assign(119.113);
x.linspace(1.);
eps.assign(1.);
//exp1.assign(1.);
//exp2.assign(-2.);
nd4j::ops::slice_bp op;
Nd4jStatus status = op.execute({&x, &eps}, {&output}, {}, {1,1,2,2}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
output.printIndexedBuffer("SLICE_BP out");
ASSERT_TRUE(output.equalsTo(exp));
//ASSERT_TRUE(output2.equalsTo(exp2));
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, TestConfusionZero_1) {
NDArray x('c', {2}, {1,2}, nd4j::DataType::INT64);
NDArray i('c', {2}, {0,2}, nd4j::DataType::INT64);
//NDArray eps('c', {2,2}, nd4j::DataType::DOUBLE);
NDArray exp('c', {4,4}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, nd4j::DataType::INT64);
//NDArray exp2('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray output('c', {4, 4}, nd4j::DataType::INT64);
//NDArray output2('c', {3, 4}, nd4j::DataType::DOUBLE);
output.assign(119.113);
x.linspace(1.);
//eps.assign(1.);
//exp1.assign(1.);
//exp2.assign(-2.);
nd4j::ops::confusion_matrix op;
Nd4jStatus status = op.execute({&x, &i}, {&output}, {}, {4}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
output.printIndexedBuffer("Confusion out");
ASSERT_TRUE(output.equalsTo(exp));
//ASSERT_TRUE(output2.equalsTo(exp2));
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, TestMaximumBP_1) {
NDArray x('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray y('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray eps('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray exp1('c', {3,4}, {0, 0, 0, 0, 0, 0, 7, 8, 9, 10, 11, 12}, nd4j::DataType::DOUBLE);
NDArray exp2('c', {3,4}, {1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 0}, nd4j::DataType::DOUBLE);
NDArray output1('c', {3, 4}, nd4j::DataType::DOUBLE);
NDArray output2('c', {3, 4}, nd4j::DataType::DOUBLE);
output1.assign(119);
x.linspace(1.);
y.linspace(12., -1.);
x.printBuffer("X");
y.printBuffer("Y");
eps.linspace(1.);
//exp1.assign(1.);
//exp2.assign(-2.);
nd4j::ops::maximum_bp op;
Nd4jStatus status = op.execute({&x, &y, &eps}, {&output1, &output2}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
output1.printIndexedBuffer("X max");
output2.printIndexedBuffer("Y max");
ASSERT_TRUE(output1.equalsTo(exp1));
ASSERT_TRUE(output2.equalsTo(exp2));
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, TestMinimumBP_1) {
NDArray x('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray y('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray eps('c', {3,4}, nd4j::DataType::DOUBLE);
NDArray exp1('c', {3,4}, {0, 0, 0, 0, 0, 0, 7, 8, 9, 10, 11, 12}, nd4j::DataType::DOUBLE);
NDArray exp2('c', {3,4}, {1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 0}, nd4j::DataType::DOUBLE);
NDArray output1('c', {3, 4}, nd4j::DataType::DOUBLE);
NDArray output2('c', {3, 4}, nd4j::DataType::DOUBLE);
output1.assign(119);
x.linspace(1.);
y.linspace(12., -1.);
x.printBuffer("X");
y.printBuffer("Y");
eps.linspace(1.);
//exp1.assign(1.);
//exp2.assign(-2.);
nd4j::ops::minimum_bp op;
Nd4jStatus status = op.execute({&x, &y, &eps}, {&output2, &output1}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
output2.printIndexedBuffer("X min");
output1.printIndexedBuffer("Y min");
ASSERT_TRUE(output1.equalsTo(exp1));
ASSERT_TRUE(output2.equalsTo(exp2));
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, reverse_test15) {
NDArray x('c', {5}, {1,2,3,4,5}, nd4j::DataType::DOUBLE);
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
NDArray axis('c', {}, {0}, nd4j::DataType::INT32);
2019-06-06 14:21:15 +02:00
NDArray z('c', {5}, nd4j::DataType::DOUBLE);
NDArray exp('c', {5}, {5,4,3,2,1}, nd4j::DataType::DOUBLE);
nd4j::ops::reverse op;
// auto result = op.execute({&x, &axis}, {}, {1}, {});
Nd4jStatus status = op.execute({&x, &axis}, {&z}, {}, {1}, {});
// auto z = result->at(0);
// z->printIndexedBuffer();
ASSERT_EQ(Status::OK(), status);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
// delete result;
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, mirrorPad_test17) {
NDArray x('c', {2,3}, {1,2,3,4,5,6}, nd4j::DataType::DOUBLE);
NDArray padding('c', {2,2}, {1,1,2,2}, nd4j::DataType::INT32);
NDArray z('c', {4,7}, nd4j::DataType::DOUBLE);
NDArray exp1('c', {4,7}, {6, 5, 4, 5, 6, 5, 4,3, 2, 1, 2, 3, 2, 1,6, 5, 4, 5, 6, 5, 4,3, 2, 1, 2, 3, 2, 1}, nd4j::DataType::DOUBLE);
NDArray exp2('c', {4,7}, {2, 1, 1, 2, 3, 3, 2,2, 1, 1, 2, 3, 3, 2,5, 4, 4, 5, 6, 6, 5,5, 4, 4, 5, 6, 6, 5}, nd4j::DataType::DOUBLE);
nd4j::ops::mirror_pad op;
Nd4jStatus status = op.execute({&x, &padding}, {&z}, {}, {0}, {}); // reflect
ASSERT_EQ(Status::OK(), status);
ASSERT_TRUE(exp1.isSameShape(z));
ASSERT_TRUE(exp1.equalsTo(z));
z = 0.;
status = op.execute({&x, &padding}, {&z}, {}, {1}, {}); // symmetric
ASSERT_EQ(Status::OK(), status);
ASSERT_TRUE(exp2.isSameShape(z));
ASSERT_TRUE(exp2.equalsTo(z));
}
/////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, mirrorPad_test18) {
NDArray x('c', {3}, {1,2,3}, nd4j::DataType::DOUBLE);
NDArray padding('c', {2}, {1,1}, nd4j::DataType::INT32);
NDArray z('c', {5}, nd4j::DataType::DOUBLE);
NDArray exp('c', {5}, {2,1,2,3,2}, nd4j::DataType::DOUBLE);
nd4j::ops::mirror_pad op;
Nd4jStatus status = op.execute({&x, &padding}, {&z}, {}, {0}, {}); // reflect
ASSERT_EQ(Status::OK(), status);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, relu_1) {
NDArray input('c', {1,5,5,6}, { 0.557449, 0.768277, 1.094015, -0.557449, -0.768277, -1.094015,0.563735, 0.900299, 0.789979, -0.563735, -0.900299, -0.789979,
0.142528, 0.959611, 0.877506, -0.142528, -0.959611, -0.877506,0.448742, 0.995377, 1.171543, -0.448742, -0.995377, -1.171543,
0.603772, 0.799391, 0.560310, -0.603772, -0.799391, -0.560310,0.529753, 0.906786, 0.737630, -0.529753, -0.906786, -0.737630,
0.221464, 0.824996, 0.472221, -0.221464, -0.824996, -0.472221,0.427730, 0.397933, 0.714365, -0.427730, -0.397933, -0.714365,
0.488365, 1.016589, 0.744197, -0.488365, -1.016589, -0.744197,0.789846, 0.940837, 0.838412, -0.789846, -0.940837, -0.838412,
0.404485, 0.677328, 0.754997, -0.404485, -0.677328, -0.754997,0.436760, 0.794765, 0.729766, -0.436760, -0.794765, -0.729766,
0.588081, 0.652226, 0.725522, -0.588081, -0.652226, -0.725522,0.374457, 1.225813, 1.053411, -0.374457, -1.225813, -1.053411,
0.300958, 0.599417, 0.633234, -0.300958, -0.599417, -0.633234,0.241993, 1.025464, 0.695378, -0.241993, -1.025464, -0.695378,
0.236289, 0.907919, 1.012100, -0.236289, -0.907919, -1.012100,0.627402, 0.565187, 0.766926, -0.627402, -0.565187, -0.766926,
0.133276, 0.326284, 0.102804, -0.133276, -0.326284, -0.102804,0.426913, 0.256251, 0.305241, -0.426913, -0.256251, -0.305241,
0.177977, 0.841799, 0.800615, -0.177977, -0.841799, -0.800615,0.001991, 0.518389, 0.439322, -0.001991, -0.518389, -0.439322,
0.166846, 0.508224, 0.486687, -0.166846, -0.508224, -0.486687,0.167493, 0.930932, 0.868717, -0.167493, -0.930932, -0.868717,
0.174864, 0.444607, 0.445000, -0.174864, -0.444607, -0.445000}, nd4j::DataType::FLOAT32);
NDArray expected('c', {1,5,5,6}, { 0.557449, 0.768277, 1.094015, 0., 0., 0., 0.563735, 0.900299, 0.789979, 0., 0., 0.,
0.142528, 0.959611, 0.877506, 0., 0., 0., 0.448742, 0.995377, 1.171543, 0., 0., 0.,
0.603772, 0.799391, 0.560310, 0., 0., 0., 0.529753, 0.906786, 0.737630, 0., 0., 0.,
0.221464, 0.824996, 0.472221, 0., 0., 0., 0.427730, 0.397933, 0.714365, 0., 0., 0.,
0.488365, 1.016589, 0.744197, 0., 0., 0., 0.789846, 0.940837, 0.838412, 0., 0., 0.,
0.404485, 0.677328, 0.754997, 0., 0., 0., 0.436760, 0.794765, 0.729766, 0., 0., 0.,
0.588081, 0.652226, 0.725522, 0., 0., 0., 0.374457, 1.225813, 1.053411, 0., 0., 0.,
0.300958, 0.599417, 0.633234, 0., 0., 0., 0.241993, 1.025464, 0.695378, 0., 0., 0.,
0.236289, 0.907919, 1.012100, 0., 0., 0., 0.627402, 0.565187, 0.766926, 0., 0., 0.,
0.133276, 0.326284, 0.102804, 0., 0., 0., 0.426913, 0.256251, 0.305241, 0., 0., 0.,
0.177977, 0.841799, 0.800615, 0., 0., 0., 0.001991, 0.518389, 0.439322, 0., 0., 0.,
0.166846, 0.508224, 0.486687, 0., 0., 0., 0.167493, 0.930932, 0.868717, 0., 0., 0.,
0.174864, 0.444607, 0.445000, 0., 0., 0.}, nd4j::DataType::FLOAT32);
NDArray z('c', {1,5,5,6}, nd4j::DataType::FLOAT32);
nd4j::ops::relu op;
Nd4jStatus status = op.execute({&input}, {&z}, {0}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
ASSERT_TRUE(expected.isSameShapeStrict(&z));
ASSERT_TRUE(expected.equalsTo(z));
}
#include "ops/declarable/helpers/multiUnique.h"
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, multiUnique_1) {
NDArray input1('c', {3,5}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, nd4j::DataType::INT32);
NDArray input2('c', {3,4}, {1,2,3,4,5,6,7,8,9,10,11,12}, nd4j::DataType::INT32);
NDArray input3('c', {2,3}, {10,11,12,13,14,15}, nd4j::DataType::INT32);
NDArray input4('c', {1,5}, {7,8,9,10,11}, nd4j::DataType::INT32);
NDArray input5('c', {5,3}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, nd4j::DataType::INT32);
//NDArray indices('c', {1}, {2}, nd4j::DataType::INT32);
//NDArray expected('c', {1,5}, {11, 12, 13, 14, 15.}, nd4j::DataType::FLOAT32);
std::vector<NDArray*> arrayList({&input1, &input2, &input3, &input4, &input5});
ASSERT_FALSE(nd4j::ops::helpers::multiUnique(arrayList));
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, multiUnique_2) {
NDArray input1('c', {3,5}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, nd4j::DataType::INT32);
NDArray input2('c', {3,4}, {21,22,23,24,25,26,27,28,29,210,211,212}, nd4j::DataType::INT32);
NDArray input3('c', {2,3}, {310,311,312,313,314,315}, nd4j::DataType::INT32);
NDArray input4('c', {1,5}, {47,48,49,410,411}, nd4j::DataType::INT32);
NDArray input5('c', {5,3}, {51,52,53,54,55,56,57,58,59,510,511,512,513,514,515}, nd4j::DataType::INT32);
//NDArray indices('c', {1}, {2}, nd4j::DataType::INT32);
//NDArray expected('c', {1,5}, {11, 12, 13, 14, 15.}, nd4j::DataType::FLOAT32);
std::vector<NDArray*> arrayList({&input1, &input2, &input3, &input4, &input5});
ASSERT_TRUE(nd4j::ops::helpers::multiUnique(arrayList));
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, tensormmul_6) {
[WIP] multi-device support (#80) * fix pad javadoc and @see links. (#72) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * [WIP] More fixes (#73) * special tests for ConstantTadHelper/ConstantShapeHelper Signed-off-by: raver119 <raver119@gmail.com> * release methods for data buffers Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary TadPack C++/Java side (#74) Signed-off-by: raver119 <raver119@gmail.com> * Zoo model TF import test updates (#75) * argLine fix, update compression_gru comment * updated comment for xception * undid but commented argLine change * updated xlnet comment * copyright headers * - new NDArray methods like()/ulike() (#77) - fix for depthwise_conv2d_bp + special test Signed-off-by: raver119 <raver119@gmail.com> * upsampling2d fix CUDA Signed-off-by: raver119 <raver119@gmail.com> * DL4J trace logging (#79) * MLN/CG trace logging for debugging Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tiny tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * strided_slice_bp shape fn leak fix Signed-off-by: raver119 <raver119@gmail.com> * SameDiff fixes and naming (#78) * remove SDVariable inplace methods * import methods * npe fix in OpVal * removed SameDiff inplace ops from tests * Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything * quick fixes * javadoc * SDVariable eval with placeholders * use regex match * better matching * initial commit Signed-off-by: raver119 <raver119@gmail.com> * initial commit Signed-off-by: raver119 <raver119@gmail.com> * fix javadoc. (#76) * fix javadoc. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace most @see with @link s. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * 4 additional tests Signed-off-by: raver119 <raver119@gmail.com> * launch context reorganization Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext reorganization Signed-off-by: raver119 <raver119@gmail.com> * per-device LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * Various DL4J/ND4J fixes (#81) * #7954 Force refresh of UI when switching tabs on overview page Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8017 Concurrent modification exception (synchronize) fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8033 Don't initialize updater in middle of writing memory crash dump Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8208 Fix shape checks for ND4J int[] creator methods Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6385 #7992 Keras import naming fixes + cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8016 Upsampling3D - add NDHWC format support Signed-off-by: AlexDBlack <blacka101@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Refactor NativeOps.h to export C functions * Actually export functions from NativeOps.h * Adapt the Java wrappers in ND4J generated with JavaCPP * Create C wrappers for some of the C++ classes currently used by ND4J * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * remove duplicate code in createBufferDetached. (#83) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Keras model import - updater lr fix (#84) * Keras model import - updater lr fix Signed-off-by: eraly <susan.eraly@gmail.com> * Keras model import - updater lr fix, cleanup Signed-off-by: eraly <susan.eraly@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Fix functions of OpaqueVariablesSet * thread-local buffers/affinity Signed-off-by: raver119 <raver119@gmail.com> * thread safety for LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * more of thread safety Signed-off-by: raver119 <raver119@gmail.com> * one more multi threaded test Signed-off-by: raver119 <raver119@gmail.com> * SameDiff Convolution Config validation, better output methods (#82) * Conv Config validation & tests Signed-off-by: Ryan Nett <rnett@skymind.io> * stackOutputs utility method Signed-off-by: Ryan Nett <rnett@skymind.io> * use constructor for validation, support negative kernel sizes (infered from weights) Signed-off-by: Ryan Nett <rnett@skymind.io> * better output methods Signed-off-by: Ryan Nett <rnett@skymind.io> * move output to be with fit and evaluate Signed-off-by: Ryan Nett <rnett@skymind.io> * fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * more fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * refactor duplicate code from pad methods. (#86) * refactor duplicate code from pad methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace switch with if. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes and improvements (#87) * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6488 ElementWiseVertex broadcast support Signed-off-by: AlexDBlack <blacka101@gmail.com> * Constructors and broadcast supported it Transforms.max/min Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8054 ElementWiseVertex now supports broadcast inputs Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8057 Nd4j.create overload dtype fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7551 ND4J Shape validation fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Numpy boolean import (#91) * numpy bool type Signed-off-by: raver119 <raver119@gmail.com> * numpy bool java side Signed-off-by: raver119 <raver119@gmail.com> * remove create method with unused parameter. (#89) * remove create method with unused parameter. * removed more unused methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * removing more unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * last removal of unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * remove createSparse methods. (#92) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes (#90) * Deprecate Old*Op instances Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8063 #8054 Broadcast exceptions + cleanup inplace ops Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Remove bad test condition Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7993 Fix shape function issue in crop_and_resize op Signed-off-by: AlexDBlack <blacka101@gmail.com> * DL4J SameDiff lambda layer fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8029 Fix for pnorm backprop math Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8038 Fix Op profiler NaN/Inf triggering + add tests (#93) Signed-off-by: AlexDBlack <blacka101@gmail.com> * createUninitializedDetached refactoring. (#94) * wip * update interface, add null implementations. * Breaking one test in a weird way. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * createUninitializedDetached refactored. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * cuda build fix for issues introduced by recent refactoring Signed-off-by: raver119 <raver119@gmail.com> * [WIP] More of CUDA (#95) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io> * build fix Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI (#97) Signed-off-by: raver119 <raver119@gmail.com> * temporary stack fix Signed-off-by: raver119 <raver119@gmail.com> * round robin affinity test Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy CudaContext methods Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy ContextPool classes/methods Signed-off-by: raver119 <raver119@gmail.com> * one legacy test removed Signed-off-by: raver119 <raver119@gmail.com> * few more fields rearranged Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext++ Signed-off-by: raver119 <raver119@gmail.com> * more of OpaqueLaunchContext methods Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext -> CudaContext Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * cusolver handles Signed-off-by: raver119 <raver119@gmail.com> * typo Signed-off-by: raver119 <raver119@gmail.com> * cusolver method Signed-off-by: raver119 <raver119@gmail.com> * cusolver handle propagated Signed-off-by: raver119 <raver119@gmail.com> * blas/solver handles Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * legacy concat implementations replaced with new CustomOp Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * concat now uses way more blocks Signed-off-by: raver119 <raver119@gmail.com> * print Signed-off-by: raver119 <raver119@gmail.com> * no more triple template mmul Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bitonic sort reorganized Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * type conversions moved to generic impl Signed-off-by: raver119 <raver119@gmail.com> * cpu data types pass Signed-off-by: raver119 <raver119@gmail.com> * non_max_suppression Signed-off-by: raver119 <raver119@gmail.com> * sortByValue fix Signed-off-by: raver119 <raver119@gmail.com> * ignore all mixed datatype tests for mmul Signed-off-by: raver119 <raver119@gmail.com> * special handling of OpProfiler exceptions Signed-off-by: raver119 <raver119@gmail.com> * - one failing concat test in cpp - Nd4j.tile now uses op internally Signed-off-by: raver119 <raver119@gmail.com> * get back dtype exception for legacy arrays deserialization Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 15:52:34 +02:00
NDArray x('c', {1}, {2}, nd4j::DataType::FLOAT32);
NDArray y('c', {2,1,2}, {1,2,3,4}, nd4j::DataType::FLOAT32);
2019-06-06 14:21:15 +02:00
NDArray exp('c', {2,2}, {2,4,6,8}, nd4j::DataType::FLOAT32);
nd4j::ops::tensormmul op;
auto results = op.execute({&x, &y}, {}, {1,0, 1,1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *result = results->at(0);
// exp.printShapeInfo();
// result->printShapeInfo();
// result->printIndexedBuffer();
ASSERT_TRUE(exp.isSameShape(result));
ASSERT_TRUE(exp.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, concat_test10) {
NDArray x0('c', {1,4,5}, nd4j::DataType::FLOAT32);
NDArray x1('c', {2,4,5}, nd4j::DataType::FLOAT32);
NDArray z('f', {3,4,5}, nd4j::DataType::FLOAT32);
x0 = 0.;
x1 = 1.;
nd4j::ops::concat op;
auto status = op.execute({&x0, &x1}, {&z}, {}, {0}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, concat_14) {
NDArray x0('c', {1,6}, {1,2,3,4,5,6});
NDArray x1('c', {1,6}, {7,8,9,10,11,12});
NDArray output('f', {2,6}, nd4j::DataType::DOUBLE);
NDArray exp('c', {2,6}, {1,2,3,4,5,6,7,8,9,10,11,12});
nd4j::ops::concat op;
auto status = op.execute({&x0, &x1}, {&output}, {}, {0}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
// output.printBuffer();
// output.printIndexedBuffer();
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, concat_15) {
NDArray x0('c', {1,4}, {1,2,3,4});
NDArray x1('c', {1,4}, {5,6,7,8});
NDArray output('c', {2,4}, nd4j::DataType::DOUBLE);
NDArray exp('c', {2,4}, {1,2,3,4,5,6,7,8});
nd4j::ops::concat op;
auto status = op.execute({&x0, &x1}, {&output}, {}, {0}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
// output.printBuffer();
// output.printIndexedBuffer();
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, reduceMeanBp_4) {
NDArray x('c', {3,5}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15});
NDArray gradO('c', {5}, nd4j::DataType::DOUBLE);
NDArray exp('c', {3,5}, nd4j::DataType::DOUBLE);
gradO = 1.;
exp = 0.333333;
nd4j::ops::reduce_mean_bp op;
auto result = op.execute({&x, &gradO}, {}, {0});
auto output = result->at(0);
// output->printShapeInfo();
// output->printIndexedBuffer();
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
delete result;
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, reduceMeanBp_5) {
NDArray x('c', {3,5}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15});
NDArray gradO('c', {3}, nd4j::DataType::DOUBLE);
NDArray exp('c', {3,5}, nd4j::DataType::DOUBLE);
gradO = 1.;
exp = 0.2;
nd4j::ops::reduce_mean_bp op;
auto result = op.execute({&x, &gradO}, {}, {1});
auto output = result->at(0);
// output->printShapeInfo();
// output->printIndexedBuffer();
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
delete result;
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, reduceSqnormBp_1) {
NDArray x('c', {8,6,4}, nd4j::DataType::DOUBLE);
NDArray gradO('c', {8,6,1}, nd4j::DataType::DOUBLE);
nd4j::ops::reduce_sqnorm_bp op;
auto result = op.execute({&x, &gradO}, {1}, {2});
ASSERT_EQ(Status::OK(), result->status());
delete result;
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pullRows_1) {
NDArray x('c', {5, 1}, {0,1,2,3,4});
NDArray z('c', {4, 1}, nd4j::DataType::DOUBLE);
NDArray exp('c', {4, 1}, {0,2,3,4});
Nd4jLong indexes[] = {0,2,3,4};
PointersManager pm(LaunchContext::defaultContext(), "pullRows");
auto pidx = reinterpret_cast<Nd4jLong *>(pm.replicatePointer(indexes, 4 * sizeof(Nd4jLong)));
std::vector<int> dims = {1};
auto xTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.getShapeInfo(), dims);
auto zTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(z.getShapeInfo(), dims);
Nd4jPointer nativeStart[2];
#ifdef __CUDABLAS__
[WIP] More of CUDA (#95) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io>
2019-08-02 19:01:03 +02:00
nativeStart[1] = (x.getContext()->getCudaStream());
2019-06-06 14:21:15 +02:00
#endif
pullRows(nativeStart, x.buffer(), x.getShapeInfo(), x.getSpecialBuffer(), x.getSpecialShapeInfo(),
2019-06-06 14:21:15 +02:00
z.buffer(), z.getShapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
4, pidx,
xTadPack.platformShapeInfo(), xTadPack.platformOffsets(),
zTadPack.platformShapeInfo(), zTadPack.platformOffsets());
ASSERT_TRUE(z.equalsTo(exp));
pm.synchronize();
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pullRows_2) {
NDArray arr('f', {5, 2}, {0,1,2,3,4,5,6,7,8,9});
NDArray* y = arr.dup('c');
NDArray x = (*y)({0,0, 0,1}, true); // view, points on first column of y, shape is {5,1}
NDArray z('c', {4, 1}, nd4j::DataType::DOUBLE);
NDArray exp('c', {4, 1}, {0,2,3,4});
Nd4jLong indexes[] = {0,2,3,4};
PointersManager pm(LaunchContext::defaultContext(), "pullRows");
auto pidx = reinterpret_cast<Nd4jLong *>(pm.replicatePointer(indexes, 4 * sizeof(Nd4jLong)));
std::vector<int> dims = {1};
auto xTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.getShapeInfo(), dims);
auto zTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(z.getShapeInfo(), dims);
Nd4jPointer nativeStart[2];
#ifdef __CUDABLAS__
[WIP] More of CUDA (#95) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io>
2019-08-02 19:01:03 +02:00
nativeStart[1] = (x.getContext()->getCudaStream());
2019-06-06 14:21:15 +02:00
#endif
pullRows(nativeStart, x.buffer(), x.getShapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
2019-06-06 14:21:15 +02:00
z.buffer(), z.getShapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
4, pidx,
xTadPack.platformShapeInfo(), xTadPack.platformOffsets(),
zTadPack.platformShapeInfo(), zTadPack.platformOffsets());
ASSERT_TRUE(z.equalsTo(exp));
pm.synchronize();
delete y;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, softmax_9) {
NDArray arrC('c', {5,2}, {-0.1, 0.2, -0.3, 0.4, -0.5, 0.6, -0.7, 0.8, -0.9, 1}, nd4j::DataType::FLOAT32);
NDArray* arrF = arrC.dup('f');
NDArray outCC('c', {5,2}, nd4j::DataType::FLOAT32);
NDArray outCF('f', {5,2}, nd4j::DataType::FLOAT32);
NDArray outFC('c', {5,2}, nd4j::DataType::FLOAT32);
NDArray outFF('c', {5,2}, nd4j::DataType::FLOAT32);
nd4j::ops::softmax op;
auto status1 = op.execute({&arrC}, {&outCC}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status1);
auto status2 = op.execute({&arrC}, {&outCF}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status2);
auto status3 = op.execute({arrF}, {&outFC}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status3);
auto status4 = op.execute({arrF}, {&outFF}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status4);
// outCC.printIndexedBuffer("\n");
// outCF.printIndexedBuffer("\n");
// outFC.printIndexedBuffer("\n");
// outFF.printIndexedBuffer("\n");
ASSERT_EQ(outCC, outCF);
ASSERT_EQ(outCC, outFC);
ASSERT_EQ(outCC, outFF);
delete arrF;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_bp_1) {
NDArray input('c', {2,3,4,10});
NDArray gradO('c', {2,3,4,10});
NDArray exp('c', {2,3,4,10}, {1.00438418e-02, 5.25184907e-03, 1.78685773e-03, -1.14537543e-03, -4.00071684e-03, -5.31899510e-03, -4.97647980e-03, -4.42161644e-03, -3.95395281e-03, -3.59310722e-03, 2.91823584e-04, -2.18498681e-05, -3.12092161e-04, -6.07360795e-04, -9.36298165e-04,
-1.02553482e-03, -7.91735307e-04, -6.15672267e-04, -4.71792649e-04, -3.42114770e-04, 4.29357824e-05, -5.46473675e-05, -1.48361753e-04, -2.47166492e-04, -3.61090642e-04, -3.81607766e-04, -2.89086485e-04, -2.17203109e-04, -1.56231865e-04, -9.91634734e-05,
8.99407951e-06, -3.76849275e-05, -8.32021178e-05, -1.31939698e-04, -1.89008832e-04, -1.96661276e-04, -1.47534331e-04, -1.08789405e-04, -7.53896020e-05, -4.36357586e-05,
1.23124300e-06, -2.60028974e-05, -5.27824741e-05, -8.17063192e-05, -1.15871291e-04, -1.19515295e-04, -8.91248055e-05, -6.49499125e-05, -4.39216528e-05, -2.37579407e-05, -9.34046056e-07, -1.87477999e-05, -3.63574763e-05, -5.54830040e-05, -7.82010393e-05,
-8.02115537e-05, -5.95739621e-05, -4.30659420e-05, -2.86241393e-05, -1.47010251e-05, -1.52835810e-06, -1.40790498e-05, -2.65316012e-05, -4.01083526e-05, -5.62983550e-05, -5.75223821e-05, -4.25982689e-05, -3.06141737e-05, -2.00884024e-05, -9.90276021e-06,
-1.61666367e-06, -1.09328157e-05, -2.02010433e-05, -3.03347279e-05, -4.24536738e-05, -4.32532870e-05, -3.19610226e-05, -2.28673853e-05, -1.48570880e-05, -7.08444895e-06,
-1.53552355e-06, -8.72318924e-06, -1.58886232e-05, -2.37402273e-05, -3.31507035e-05, -3.37014644e-05, -2.48602537e-05, -1.77248403e-05, -1.14254890e-05, -5.30027773e-06, -1.40318230e-06, -7.11624580e-06, -1.28209140e-05, -1.90826468e-05, -2.66006646e-05,
-2.69959855e-05, -1.98865000e-05, -1.41387427e-05, -9.05554589e-06, -4.10473058e-06, -1.26330860e-06, -5.91293519e-06, -1.05618501e-05, -1.56718652e-05, -2.18157675e-05, -2.21090413e-05, -1.62681827e-05, -1.15394150e-05, -7.35144840e-06, -3.26711961e-06,
-1.13179840e-06, -4.98940426e-06, -8.85062400e-06, -1.30997241e-05, -1.82144904e-05, -1.84380206e-05, -1.35542105e-05, -9.59566933e-06, -6.08572736e-06, -2.65887866e-06,
-1.01367493e-06, -4.26561428e-06, -7.52358210e-06, -1.11123145e-05, -1.54364170e-05, -1.56106762e-05, -1.14666063e-05, -8.10436813e-06, -5.12021325e-06, -2.20401580e-06, -9.09635219e-07, -3.68808492e-06, -6.47385696e-06, -9.54499774e-06, -1.32485484e-05,
-1.33870126e-05, -9.82651000e-06, -6.93532820e-06, -4.36710525e-06, -1.85539375e-06, -8.18735487e-07, -3.22003825e-06, -5.62928972e-06, -8.28724023e-06, -1.14948289e-05, -1.16066676e-05, -8.51461300e-06, -6.00201292e-06, -3.76846447e-06, -1.58258263e-06,
-7.39498375e-07, -2.83553072e-06, -4.93973403e-06, -7.26259532e-06, -1.00675643e-05, -1.01591886e-05, -7.44886802e-06, -5.24508141e-06, -3.28481428e-06, -1.36524977e-06,
-6.70378654e-07, -2.51585061e-06, -4.36947221e-06, -6.41683391e-06, -8.89049170e-06, -8.96649362e-06, -6.57134478e-06, -4.62275193e-06, -2.88851857e-06, -1.18941352e-06, -6.09944266e-07, -2.24723408e-06, -3.89250545e-06, -5.71062310e-06, -7.90838203e-06,
-7.97212033e-06, -5.84020108e-06, -4.10491293e-06, -2.55976192e-06, -1.04521314e-06, -5.56935277e-07, -2.01937837e-06, -3.48954882e-06, -5.11487451e-06, -7.08044308e-06, -7.13442114e-06, -5.22460778e-06, -3.66942504e-06, -2.28403951e-06, -9.25535005e-07,
-5.10270809e-07, -1.82444705e-06, -3.14605040e-06, -4.60769843e-06, -6.37601988e-06, -6.42213308e-06, -4.70144141e-06, -3.29971408e-06, -2.05053857e-06, -8.25151346e-07,
-4.69036365e-07, -1.65639949e-06, -2.85086708e-06, -4.17237243e-06, -5.77171340e-06, -5.81141694e-06, -4.25308644e-06, -2.98317354e-06, -1.85106614e-06, -7.40148607e-07, -4.32460268e-07, -1.51051631e-06, -2.59534818e-06, -3.79594053e-06, -5.24941379e-06,
-5.28384317e-06, -3.86593183e-06, -2.71007866e-06, -1.67932183e-06, -6.67554332e-07, -3.99893480e-07, -1.38306928e-06, -2.37269478e-06, -3.46823890e-06, -4.79492701e-06, -4.82497671e-06, -3.52932648e-06, -2.47282924e-06, -1.53039912e-06, -6.05077048e-07,
-3.70789934e-07, -1.27108103e-06, -2.17750403e-06, -3.18120783e-06, -4.39700398e-06, -4.42338614e-06, -3.23483960e-06, -2.26541715e-06, -1.40042869e-06, -5.50929371e-07});
input.linspace(1);
gradO = 1;
nd4j::ops::lrn_bp op;
auto results = op.execute({&input, &gradO}, {1., 1., 1}, {5});
auto gradI = results->at(0);
ASSERT_EQ(*gradI, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_bp_2) {
NDArray input('c', {2,3,4,10});
NDArray gradO('c', {2,3,4,10});
NDArray exp('c', {2,3,4,10}, {-1.06179598e-03, -2.70050880e-03, -4.02126182e-03, -2.58826977e-03, -2.16024881e-03, -2.20575323e-03, -2.75954953e-03, -4.42477595e-03, -2.89176637e-03, -9.46942251e-04, -1.32603094e-03, -3.34868953e-03, -4.98152524e-03, -3.21313459e-03, -2.68880837e-03, -2.75207381e-03, -3.45109636e-03, -5.54159656e-03, -3.61320702e-03, -1.16457068e-03,
-1.70158676e-03, -4.26037982e-03, -6.33032294e-03, -4.09416296e-03, -3.43742501e-03, -3.52900685e-03, -4.43827361e-03, -7.13911094e-03, -4.64041065e-03, -1.46419462e-03, -2.26016506e-03, -5.59943309e-03, -8.30824208e-03, -5.39253885e-03, -4.54709725e-03, -4.68666852e-03, -5.91615774e-03, -9.53640230e-03, -6.17204653e-03, -1.89000927e-03,
-3.14102764e-03, -7.67878769e-03, -1.13740638e-02, -7.41857197e-03, -6.29213545e-03, -6.51977258e-03, -8.27047508e-03, -1.33656031e-02, -8.59564263e-03, -2.51553906e-03, -4.64272872e-03, -1.11560747e-02, -1.64905936e-02, -1.08321551e-02, -9.26420093e-03, -9.67171416e-03, -1.23506878e-02, -2.00199075e-02, -1.27442302e-02, -3.45497206e-03,
-7.49545777e-03, -1.76018942e-02, -2.59558801e-02, -1.72390267e-02, -1.49321631e-02, -1.57669969e-02, -2.03234926e-02, -3.30405571e-02, -2.06389092e-02, -4.78462130e-03, -1.38390735e-02, -3.14943902e-02, -4.63354364e-02, -3.13667879e-02, -2.77508944e-02, -2.98541505e-02, -3.89749333e-02, -6.32867143e-02, -3.77952419e-02, -5.26650995e-03,
-3.16195861e-02, -6.90807998e-02, -1.01725549e-01, -7.13700354e-02, -6.54785037e-02, -7.25797564e-02, -9.49372798e-02, -1.47399038e-01, -7.21285641e-02, 2.15010419e-02, -8.06625858e-02, -1.79638922e-01, -2.66877055e-01, -1.64447501e-01, -1.00968637e-01, -2.75682062e-02, 1.13596700e-01, 3.32260162e-01, 5.96845448e-01, 8.13161016e-01,
9.52381015e-01, 8.13161016e-01, 5.96845508e-01, 3.32260162e-01, 1.13596708e-01, -2.75682174e-02, -1.37202948e-01, -2.71326721e-01, -1.84127048e-01, -7.94974267e-02, 3.29870060e-02, -7.39035010e-02, -1.60488203e-01, -1.04997143e-01, -8.06594491e-02, -7.25797564e-02, -7.87955597e-02, -1.11791104e-01, -7.58660138e-02, -3.48676592e-02,
-4.96974029e-03, -4.04525958e-02, -6.82792515e-02, -4.20900472e-02, -3.21968049e-02, -2.98541524e-02, -3.36477235e-02, -4.95737195e-02, -3.37007530e-02, -1.48636252e-02, -4.92655952e-03, -2.17927732e-02, -3.49853337e-02, -2.15152260e-02, -1.66727621e-02, -1.57669988e-02, -1.81730352e-02, -2.73226351e-02, -1.85334161e-02, -7.91355036e-03,
-3.57114570e-03, -1.33136865e-02, -2.09431648e-02, -1.29161589e-02, -1.01064872e-02, -9.67171136e-03, -1.12970043e-02, -1.71830691e-02, -1.16271935e-02, -4.84848116e-03, -2.59314431e-03, -8.91274121e-03, -1.38697922e-02, -8.58002994e-03, -6.75992295e-03, -6.51977304e-03, -7.68158771e-03, -1.17703741e-02, -7.94785097e-03, -3.25604435e-03,
-1.94202550e-03, -6.36530807e-03, -9.84015409e-03, -6.10316684e-03, -4.83274320e-03, -4.68666898e-03, -5.55526093e-03, -8.55536573e-03, -5.76688722e-03, -2.33053416e-03, -1.50016253e-03, -4.76644421e-03, -7.33569637e-03, -4.55961144e-03, -3.62428720e-03, -3.52900638e-03, -4.20164689e-03, -6.49448857e-03, -4.37143166e-03, -1.74761284e-03,
-1.19028054e-03, -3.69978836e-03, -5.67591935e-03, -3.53418733e-03, -2.81759514e-03, -2.75207404e-03, -3.28776496e-03, -5.09600528e-03, -3.42601724e-03, -1.35771628e-03, -9.65878542e-04, -2.95373448e-03, -4.52052988e-03, -2.81889434e-03, -2.25270819e-03, -2.20575323e-03, -2.64216494e-03, -4.10421193e-03, -2.75646802e-03, -1.08450721e-03,
-7.98697409e-04, -2.41194153e-03, -3.68447183e-03, -2.30037421e-03, -1.84193184e-03, -1.80714857e-03, -2.16938392e-03, -3.37567786e-03, -2.26523401e-03, -8.85842834e-04, -6.71049987e-04, -2.00629188e-03, -3.06024216e-03, -1.91263494e-03, -1.53396139e-03, -1.50748459e-03, -1.81288645e-03, -2.82496959e-03, -1.89429161e-03, -7.36965681e-04,
-5.71501616e-04, -1.69480499e-03, -2.58198148e-03, -1.61517004e-03, -1.29717519e-03, -1.27655920e-03, -1.53747783e-03, -2.39865575e-03, -1.60740130e-03, -6.22576685e-04, -4.92433901e-04, -1.45049067e-03, -2.20754091e-03, -1.38200901e-03, -1.11122860e-03, -1.09486456e-03, -1.32032647e-03, -2.06194492e-03, -1.38099224e-03, -5.32818493e-04});
input.linspace(-10, 0.1);
gradO = 1;
nd4j::ops::lrn_bp op;
auto results = op.execute({&input, &gradO}, {1., 1., 1}, {2});
auto gradI = results->at(0);
ASSERT_EQ(*gradI, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_bp_3) {
NDArray input('c', {2,3,4,10});
NDArray gradO('c', {2,3,4,10});
NDArray exp('c', {2,3,4,10}, {-6.78180193e-04, -1.06947345e-03, -1.50362519e-03, -1.47711602e-03, -1.45060697e-03, -1.42409769e-03, -1.39758852e-03, -1.37107936e-03, -8.79839936e-04, -4.27795108e-04, -8.62496032e-04, -1.34585891e-03, -1.88281795e-03, -1.84591592e-03, -1.80901436e-03, -1.77211256e-03, -1.73521065e-03, -1.69830909e-03, -1.08184782e-03, -5.13895764e-04,
-1.13227055e-03, -1.74428569e-03, -2.42520543e-03, -2.37169350e-03, -2.31818156e-03, -2.26466986e-03, -2.21115816e-03, -2.15764646e-03, -1.36136822e-03, -6.26647263e-04, -1.54878304e-03, -2.34815548e-03, -3.23930010e-03, -3.15753091e-03, -3.07576265e-03, -2.99399323e-03, -2.91222427e-03, -2.83045508e-03, -1.76287338e-03, -7.75904860e-04,
-2.23870482e-03, -3.32566188e-03, -4.54067392e-03, -4.40674182e-03, -4.27281018e-03, -4.13887901e-03, -4.00494691e-03, -3.87101574e-03, -2.36659218e-03, -9.72117065e-04, -3.49745504e-03, -5.05724549e-03, -6.80746930e-03, -6.56589260e-03, -6.32431870e-03, -6.08274434e-03, -5.84116904e-03, -5.59959421e-03, -3.32604628e-03, -1.21081201e-03,
-6.14068285e-03, -8.55270587e-03, -1.12749329e-02, -1.07723922e-02, -1.02698486e-02, -9.76730697e-03, -9.26476624e-03, -8.76222178e-03, -4.94601438e-03, -1.37539487e-03, -1.30690653e-02, -1.72132626e-02, -2.19351258e-02, -2.06174850e-02, -1.92998387e-02, -1.79821979e-02, -1.66645572e-02, -1.53469117e-02, -7.72346184e-03, -5.22134826e-04,
-3.99478227e-02, -4.78655733e-02, -5.70126995e-02, -5.16961850e-02, -4.63796593e-02, -4.10631336e-02, -3.57466117e-02, -3.04300785e-02, -9.11374856e-03, 1.14024431e-02, -2.35893592e-01, -2.17480078e-01, -1.88097835e-01, -1.38812393e-01, -8.95269737e-02, -4.02415469e-02, 9.04385652e-03, 5.83292767e-02, 1.78530529e-01, 2.96026409e-01,
4.16666657e-01, 2.79557735e-01, 1.36546940e-01, 7.49502778e-02, 1.33536234e-02, -4.82430384e-02, -1.09839723e-01, -1.71436355e-01, -2.33033031e-01, -2.74476141e-01, 1.54189002e-02, -8.10869783e-03, -3.24862264e-02, -3.88403721e-02, -4.51945364e-02, -5.15486896e-02, -5.79028539e-02, -6.42570183e-02, -5.45457527e-02, -4.61437553e-02,
-2.29711179e-04, -8.06892477e-03, -1.63567103e-02, -1.78351123e-02, -1.93135180e-02, -2.07919199e-02, -2.22703181e-02, -2.37487257e-02, -1.87229179e-02, -1.43175106e-02, -1.37000845e-03, -5.16320160e-03, -9.21433326e-03, -9.76086594e-03, -1.03073996e-02, -1.08539313e-02, -1.14004640e-02, -1.19469995e-02, -9.08647850e-03, -6.55380823e-03,
-1.23490533e-03, -3.45137389e-03, -5.83263952e-03, -6.09064987e-03, -6.34865928e-03, -6.60666777e-03, -6.86467718e-03, -7.12268520e-03, -5.30054048e-03, -3.67741752e-03, -9.94500006e-04, -2.44303374e-03, -4.00528917e-03, -4.14666394e-03, -4.28803731e-03, -4.42941114e-03, -4.57078544e-03, -4.71215881e-03, -3.45545518e-03, -2.33156094e-03,
-7.93270417e-04, -1.81236281e-03, -2.91444198e-03, -3.00004939e-03, -3.08565609e-03, -3.17126350e-03, -3.25687067e-03, -3.34247784e-03, -2.42513884e-03, -1.60246110e-03, -6.39747130e-04, -1.39506557e-03, -2.21352675e-03, -2.26921216e-03, -2.32489733e-03, -2.38058274e-03, -2.43626791e-03, -2.49195332e-03, -1.79354590e-03, -1.16592250e-03,
-5.23828785e-04, -1.10576022e-03, -1.73730974e-03, -1.77553250e-03, -1.81375467e-03, -1.85197743e-03, -1.89020019e-03, -1.92842260e-03, -1.37922564e-03, -8.84913374e-04, -4.35433642e-04, -8.97393096e-04, -1.39935245e-03, -1.42670958e-03, -1.45406683e-03, -1.48142409e-03, -1.50878134e-03, -1.53613824e-03, -1.09309505e-03, -6.93831593e-04,
-3.66991735e-04, -7.42538832e-04, -1.15100679e-03, -1.17125409e-03, -1.19150116e-03, -1.21174823e-03, -1.23199564e-03, -1.25224248e-03, -8.87364266e-04, -5.58210537e-04, -3.13144788e-04, -6.24410110e-04, -9.63238359e-04, -9.78639582e-04, -9.94040747e-04, -1.00944215e-03, -1.02484343e-03, -1.04024459e-03, -7.34565372e-04, -4.58585098e-04,
-2.70129647e-04, -5.32291830e-04, -8.17865424e-04, -8.29851197e-04, -8.41836852e-04, -8.53822567e-04, -8.65808397e-04, -8.77794111e-04, -6.18013146e-04, -3.83307983e-04, -2.35282409e-04, -4.59096394e-04, -7.03040219e-04, -7.12549896e-04, -7.22059398e-04, -7.31569016e-04, -7.41078693e-04, -7.50588137e-04, -5.27105702e-04, -3.25074652e-04});
input.linspace(-10, 0.1);
gradO = 1;
nd4j::ops::lrn_bp op;
auto results = op.execute({&input, &gradO}, {1., 1., 1}, {7});
auto gradI = results->at(0);
ASSERT_EQ(*gradI, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_bp_4) {
NDArray input('c', {2,3,4,10});
NDArray gradO('c', {2,3,4,10});
NDArray exp('c', {2,3,4,10}, {-0.00119282, -0.00116995, -0.00114708, -0.00112421, -0.00110134, -0.00107847, -0.00105559, -0.00103272, -0.00100985, -0.00098698, -0.00150102, -0.00146918, -0.00143734, -0.0014055 , -0.00137366, -0.00134182, -0.00130998, -0.00127814, -0.0012463 , -0.00121446,
-0.00194534,-0.00189916, -0.00185299, -0.00180681, -0.00176064, -0.00171446, -0.00166829, -0.00162211, -0.00157593, -0.00152976, -0.0026189 , -0.00254833, -0.00247776, -0.00240719, -0.00233662, -0.00226605, -0.00219548, -0.00212491, -0.00205434, -0.00198377,
-0.00370962, -0.00359401, -0.00347839, -0.00336277, -0.00324716, -0.00313154, -0.00301593, -0.00290031, -0.00278469, -0.00266908, -0.00564327, -0.00543464, -0.00522602, -0.00501739, -0.00480876, -0.00460013, -0.0043915 , -0.00418288, -0.00397425, -0.00376562,
-0.00955302, -0.00911865, -0.00868428, -0.00824992, -0.00781555, -0.00738118, -0.00694682, -0.00651245, -0.00607808, -0.00564371, -0.01927758, -0.01813637, -0.01699515, -0.01585394, -0.01471272, -0.01357151, -0.01243029, -0.01128908, -0.01014786, -0.00900664,
-0.05409876, -0.04945958, -0.04482041, -0.04018124, -0.03554206, -0.03090289, -0.02626371, -0.02162454, -0.01698537, -0.01234619, -0.26145172, -0.214688 , -0.16792431, -0.12116055, -0.07439683, -0.02763309, 0.01913062, 0.06589434, 0.11265809, 0.15942183,
0.25974026, 0.19902176, 0.13830325, 0.07758474, 0.01686624, -0.04385226, -0.10457078, -0.16528927, -0.22600779, -0.2867263 , -0.01177884, -0.0173331 , -0.02288735, -0.02844159, -0.03399584, -0.0395501 , -0.04510435, -0.05065861, -0.05621284, -0.0617671 ,
-0.00944993, -0.01073084, -0.01201174, -0.01329265, -0.01457355, -0.01585446, -0.01713536, -0.01841627, -0.01969717, -0.02097807, -0.00589878, -0.00637122, -0.00684368, -0.00731612, -0.00778858, -0.00826102, -0.00873347, -0.00920592, -0.00967837, -0.01015082,
-0.00390961, -0.00413245, -0.00435528, -0.00457812, -0.00480095, -0.00502378, -0.00524662, -0.00546945, -0.00569229, -0.00591512, -0.00275609, -0.00287813, -0.00300018, -0.00312222, -0.00324427, -0.00336631, -0.00348836, -0.0036104 , -0.00373245, -0.00385449,
-0.00203982, -0.00211371, -0.00218759, -0.00226147, -0.00233536, -0.00240924, -0.00248312, -0.00255701, -0.00263089, -0.00270478, -0.00156781, -0.00161586, -0.00166391, -0.00171197, -0.00176002, -0.00180807, -0.00185612, -0.00190417, -0.00195223, -0.00200028,
-0.00124141, -0.00127439, -0.00130737, -0.00134035, -0.00137333, -0.00140631, -0.00143929, -0.00147227, -0.00150525, -0.00153822, -0.00100674, -0.00103034, -0.00105394, -0.00107754, -0.00110115, -0.00112475, -0.00114835, -0.00117195, -0.00119556, -0.00121916,
-0.00083255, -0.00085002, -0.00086748, -0.00088495, -0.00090242, -0.00091989, -0.00093735, -0.00095482, -0.00097229, -0.00098976, -0.0006998 , -0.00071308, -0.00072637, -0.00073965, -0.00075294, -0.00076623, -0.00077951, -0.0007928 , -0.00080609, -0.00081937,
-0.00059635, -0.00060669, -0.00061703, -0.00062737, -0.00063771, -0.00064805, -0.00065839, -0.00066873, -0.00067906, -0.0006894 , -0.0005142 , -0.0005224 , -0.00053061, -0.00053881, -0.00054701, -0.00055522, -0.00056342, -0.00057162, -0.00057983, -0.00058803});
input.linspace(-10, 0.1);
gradO = 1;
nd4j::ops::lrn_bp op;
auto results = op.execute({&input, &gradO}, {1., 1., 1}, {12});
auto gradI = results->at(0);
ASSERT_EQ(*gradI, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_bp_5) {
NDArray input('c', {2,2,2,5});
NDArray gradO('c', {2,2,2,5});
NDArray exp('c', {2,2,2,5}, {6.2497472e-03, -3.4008762e-03, -1.5232352e-02, 2.3018382e-04, 1.3257053e-02, 7.1492628e-03, -5.4330104e-03, -2.0878183e-02, 1.5153568e-03, 2.0571884e-02,
6.7926152e-03, -1.0990440e-02, -3.2685306e-02, 7.2436016e-03, 4.2120241e-02, -1.3439789e-02, -3.4284033e-02, -4.4852167e-02, 8.8073254e-02, 2.2223940e-01,
4.0824831e-01, 2.1201703e-01, 3.8555145e-02, -3.1969927e-02, -3.0673094e-02, 5.2034661e-02, 1.0463811e-02, -3.6619946e-02, -1.3280880e-02, 5.9767403e-03,
2.3028374e-02, 2.0452859e-03, -2.2533152e-02, -6.1039329e-03, 7.2805062e-03, 1.4290780e-02, 3.8017845e-04, -1.6107092e-02,-3.6896234e-03, 6.4357026e-03});
input.linspace(-20, 1);
// gradO.linspace(0.1, 0.1);
gradO = 1;
nd4j::ops::lrn_bp op;
auto results = op.execute({&input, &gradO}, {1., 1., 0.5}, {2});
auto gradI = results->at(0);
ASSERT_EQ(*gradI, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_bp_6) {
NDArray input('c', {1,1,1,5}, {1, 2., 3, 4, 5});
NDArray gradO('c', {1,1,1,5});
NDArray exp('c', {1,1,1,5}, {0.06926288, 0.04360996, 0.01795704, -0.00769587, -0.0333488});
// gradO.linspace(-1.5, 0.1);
gradO = 1;
nd4j::ops::lrn_bp op;
auto results = op.execute({&input, &gradO}, {1., 2., 0.5}, {10});
auto gradI = results->at(0);
ASSERT_EQ(*gradI, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_bp_7) {
NDArray input('c', {2,2,2,5});
NDArray gradO('c', {2,2,2,5});
input.linspace(-20, 1);
gradO.linspace(-1.5, 0.1);
const OpArgsHolder argsHolderFF({&input}, {1,2,0.5}, {2});
const OpArgsHolder argsHolderBP({&input, &gradO}, {1,2,0.5}, {2});
nd4j::ops::lrn opFF;
nd4j::ops::lrn_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_bp_8) {
NDArray input('c', {1,1,1,5}, {1, 2, 3, 4, 5});
NDArray gradO('c', {1,1,1,5}, {2, 3, 4, 5, 6});
const OpArgsHolder argsHolderFF({&input}, {1,2,0.5}, {2});
const OpArgsHolder argsHolderBP({&input, &gradO}, {1,2,0.5}, {2});
nd4j::ops::lrn opFF;
nd4j::ops::lrn_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_bp_9) {
NDArray input('c', {1,1,1,5}, {1,2,3,4,5});
NDArray gradO('c', {1,1,1,5}, {1, 1, 1, 1, 1});
NDArray exp('c', {1,1,1,5}, {0.1084472 , 0.03816165, 0.00978456, -0.01859251,-0.02511311});
nd4j::ops::lrn_bp op;
auto results = op.execute({&input, &gradO}, {1., 2., 0.5}, {3});
auto gradI = results->at(0);
// for (int i = 0; i < exp.lengthOf(); ++i)
// printf("%10.5f %10.5f\n", exp.e<double>(i), gradI->e<double>(i));
ASSERT_EQ(*gradI, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_bp_10) {
NDArray input('c', {1,1,1,1}, {1});
NDArray gradO('c', {1,1,1,1}, {1});
NDArray exp('c', {1,1,1,1}, {0.19245008});
nd4j::ops::lrn_bp op;
auto results = op.execute({&input, &gradO}, {1., 2., 0.5}, {1});
auto gradI = results->at(0);
ASSERT_EQ(*gradI, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_1) {
NDArray input('c', {2,2,2,5});
NDArray exp('c', {2,2,2,5}, {-0.42923987, -0.3623817 , -0.3152079 , -0.34268343, -0.3836809, -0.43648192, -0.3652726 , -0.31428117, -0.3379276 , -0.3731494 ,
-0.45129365, -0.37083852, -0.3111639 , -0.3260225 , -0.34698898, -0.4975186 , -0.3831305 , -0.2847474 , -0.25607377, -0.18569534,
0., 0.18569534, 0.25607377, 0.38411066, 0.52075565,0.33633637, 0.32117262, 0.30966178, 0.37259716, 0.45631808,
0.36986336, 0.33643705, 0.31394684, 0.36608824, 0.43857202, 0.3821113 , 0.34197718, 0.31508508, 0.36284128, 0.4303756 });
input.linspace(-20, 1);
nd4j::ops::lrn op;
auto results = op.execute({&input}, {1., 2., 0.5}, {2});
auto output = results->at(0);
ASSERT_EQ(*output, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_2) {
NDArray input('c', {1,1,1,5}, {1, 2., 3, 4, 5});
NDArray exp('c', {1,1,1,5}, {0.09530295, 0.1906059 , 0.28590885, 0.3812118 , 0.47651473});
nd4j::ops::lrn op;
auto results = op.execute({&input}, {0.1, 2., 0.5}, {5});
auto output = results->at(0);
ASSERT_EQ(*output, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_3) {
NDArray input('c', {1,1,1,1}, {1.});
NDArray exp('c', {1,1,1,1}, {0.69006556});
nd4j::ops::lrn op;
auto results = op.execute({&input}, {0.1, 2., 0.5}, {5});
auto output = results->at(0);
ASSERT_EQ(*output, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_4) {
NDArray input('c', {1,1,1,1}, {1.});
NDArray exp('c', {1,1,1,1}, {0.69006556});
nd4j::ops::lrn op;
auto results = op.execute({&input}, {0.1, 2., 0.5}, {0});
auto output = results->at(0);
ASSERT_EQ(*output, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, lrn_5) {
NDArray input('c', {1,1,1,5}, {1, 2., 3, 4, 5});
NDArray exp('c', {1,1,1,5}, {0.69006556, 0.70272833, 0.7051508 , 0.7060045 , 0.7064008});
nd4j::ops::lrn op;
auto results = op.execute({&input}, {0.1, 2., 0.5}, {0});
auto output = results->at(0);
ASSERT_EQ(*output, exp);
delete results;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, inTopK_1) {
NDArray x('c', {4, 5}, {11.0, 14.0, 6.0, 9.0, 3.5, 7.0, 21.0, 3.0, 15.0, 6.0, 9.0, 3.5, 7.0, 11.0, 13.0, 5.0, 16.0, 9.0, 13.5, 7.0});
NDArray y('c', {4}, {0, 0, 0, 0}, nd4j::DataType::INT64);
NDArray z('c', {4}, {1, 1, 1, 1}, nd4j::DataType::BOOL);
NDArray expV('c', {4}, {1, 0, 0, 0}, nd4j::DataType::BOOL);
nd4j::ops::in_top_k op;
Nd4jStatus status = op.execute({&x, &y, }, {&z}, {}, {2}, {});
// z.printIndexedBuffer();
ASSERT_EQ(ND4J_STATUS_OK, status);
ASSERT_TRUE(expV.isSameShape(z));
ASSERT_TRUE(expV.equalsTo(z));
}
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, inTopK_2) {
auto input = NDArrayFactory::create<double>('c', {4, 5});
auto idx = NDArrayFactory::create<Nd4jLong>('c', {4});
auto exp = NDArrayFactory::create<bool>({0, 0, 0, 1});
int exclusive, reverse;
input.linspace(1);
idx.linspace(1);
nd4j::ops::in_top_k op;
auto res = op.execute({&input, &idx}, {}, {1}, {}, false, nd4j::DataType::BOOL);
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
//res->at(0)->printIndexedBuffer("IN_TOP_K output");
ASSERT_TRUE(res->at(0)->equalsTo(&exp));
delete res;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, inTopK_3) {
auto x = NDArrayFactory::create<double>('c', {2, 3}, {1.0, 11.0, 3.0, 14.0, 5.0, 6.0});
auto y = NDArrayFactory::create<Nd4jLong>('c', {2}, {1, 1});
auto expV = NDArrayFactory::create<bool>('c', {2}, {true, false});
nd4j::ops::in_top_k op;
auto result = op.execute({&x, &y}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
ASSERT_EQ(1, result->size());
auto v = result->at(0);
ASSERT_TRUE(expV.isSameShape(v));
ASSERT_TRUE(expV.equalsTo(v));
delete result;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, inTopK_4) {
auto x = NDArrayFactory::create<double>('c', {6, 4}, {11.0, 3.0, 14.0, 5.0, 6.0, 9.0, 3.5, 7.0, 21.0, 3.0, 14.0, 15.0, 6.0, 9.0, 3.5, 7.0, 11.0, 13.0, 14.0, 5.0, 16.0, 9.0, 13.5, 7.0} );
auto y = NDArrayFactory::create<Nd4jLong>('c', {6}, {0, 0, 0, 0, 0, 0});
auto expV = NDArrayFactory::create<bool>('c', {6}, {true, false, true, false, false, true});
nd4j::ops::in_top_k op;
auto result = op.execute({&x, &y}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
ASSERT_EQ(1, result->size());
auto v = result->at(0);
ASSERT_TRUE(expV.isSameShape(v));
ASSERT_TRUE(expV.equalsTo(v));
delete result;
}
//////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, inTopK_5) {
auto x = NDArrayFactory::create<double>('f', {6, 4}, {11.0, 3.0, 14.0, 5.0, 6.0, 9.0, 3.5, 7.0, 21.0, 3.0, 14.0, 15.0, 6.0, 9.0, 3.5, 7.0, 11.0, 13.0, 14.0, 5.0, 16.0, 9.0, 13.5, 7.0} );
auto y = NDArrayFactory::create<Nd4jLong>('f', {6}, {0, 0, 0, 0, 0, 0});
auto expV = NDArrayFactory::create<bool>('f', {6}, {1, 0, 0, 0, 0, 0 });
nd4j::ops::in_top_k op;
auto result = op.execute({&x, &y}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
ASSERT_EQ(1, result->size());
auto v = result->at(0);
ASSERT_TRUE(expV.isSameShape(v));
ASSERT_TRUE(expV.equalsTo(v));
delete result;
}
2019-06-06 14:21:15 +02:00
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cube_1) {
NDArray x('c', {2, 3}, {1., 2., 3., 4., 5, 6});
NDArray exp('c', {2, 3}, {1., 8., 27., 64., 125, 216});
nd4j::ops::cube op;
auto result = op.execute({&x}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
auto z = result->at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, cube_bp_1) {
NDArray x('c', {2, 3}, {1., 2., 3., 4., 5, 6});
NDArray gradO('c', {2, 3}, nd4j::DataType::DOUBLE);
NDArray exp('c', {2, 3}, {1.5, 6., 13.5, 24., 37.5, 54});
gradO = 0.5;
nd4j::ops::cube_bp op;
auto result = op.execute({&x, &gradO}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
auto z = result->at(0);
// z->printIndexedBuffer();
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
////////////////////////////////////////////////////////////////////
// CONSTANT mode 2D
TEST_F(DeclarableOpsTests12, pad_tests1) {
NDArray input('c', {2,3}, {1,2,3,4,5,6}, nd4j::DataType::FLOAT32);
NDArray paddings('c', {2,2}, {1,1,2,2}, nd4j::DataType::INT32);
NDArray expected('c', {4,7}, {0,0,0,0,0,0,0, 0,0,1,2,3,0,0, 0,0,4,5,6,0,0, 0,0,0,0,0,0,0}, nd4j::DataType::FLOAT32);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// REFLECT mode 2D
TEST_F(DeclarableOpsTests12, pad_tests2) {
float inBuff[] = {1,2,3,4,5,6};
int padBuff[] = {1,1,2,2};
float expBuff[] = {6,5,4,5,6,5,4, 3,2,1,2,3,2,1, 6,5,4,5,6,5,4, 3,2,1,2,3,2,1};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {2,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// SYMMETRIC mode 2D
TEST_F(DeclarableOpsTests12, pad_tests3) {
float inBuff[] = {1,2,3,4,5,6};
int padBuff[] = {1,1,2,2};
float expBuff[] = {2,1,1,2,3,3,2, 2,1,1,2,3,3,2, 5,4,4,5,6,6,5, 5,4,4,5,6,6,5};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {2,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// CONSTANT mode 3D
TEST_F(DeclarableOpsTests12, pad_tests4) {
float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18};
int padBuff[] = {1,1,2,2,2,2};
float expBuff[] = {0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 1, 2, 3,0,0,0,0, 4, 5, 6,0,0,0,0,
7, 8, 9,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0,10,11,12,0,
0,0,0,13,14,15,0,0,0,0,16,17,18,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0,
0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {3,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
// for(int i = 0; i < expected.lengthOf(); ++i) {
// float one = expected.e<float>(i);
// float two = result->e<float>(i);
// if(one != two)
// printf("%i : %f, %f\n", i, one, two);
// }
delete results;
}
////////////////////////////////////////////////////////////////////
// REFLECT mode 3D
TEST_F(DeclarableOpsTests12, pad_tests5) {
float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18};
int padBuff[] = {1,1,2,2,2,2};
float expBuff[] = {18,17,16,17,18,17,16, 15,14,13,14,15,14,13, 12,11,10,11,12,11,10, 15,14,13,14,15,14,13, 18,17,16,17,18,17,16, 15,14,13,14,15,14,13, 12,11,10,11,12,11,10, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 2, 1, 6, 5, 4, 5, 6, 5, 4, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 2, 1, 18,17,16,17,18,17,16, 15,14,13,14,15,14,13, 12,11,10,11,12,11,10, 15,14,13,14,15,14,13, 18,17,16,17,18,17,16, 15,14,13,14,15,14,13, 12,11,10,11,12,11,10, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 2, 1, 6, 5, 4, 5, 6, 5, 4, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 2, 1};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {3,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// SYMMETRIC mode 3D
TEST_F(DeclarableOpsTests12, pad_tests6) {
float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18};
int padBuff[] = {1,1,2,2,2,2};
float expBuff[] = {5, 4, 4, 5, 6, 6, 5, 2, 1, 1, 2, 3, 3, 2, 2, 1, 1, 2, 3, 3, 2, 5, 4, 4, 5, 6, 6, 5, 8, 7, 7, 8, 9, 9, 8, 8, 7, 7, 8, 9, 9, 8, 5, 4, 4, 5, 6, 6, 5, 5, 4, 4, 5, 6, 6, 5, 2, 1, 1, 2, 3, 3, 2, 2, 1, 1, 2, 3, 3, 2, 5, 4, 4, 5, 6, 6, 5, 8, 7, 7, 8, 9, 9, 8, 8, 7, 7, 8, 9, 9, 8, 5, 4, 4, 5, 6, 6, 5, 14,13,13,14,15,15,14, 11,10,10,11,12,12,11, 11,10,10,11,12,12,11, 14,13,13,14,15,15,14, 17,16,16,17,18,18,17, 17,16,16,17,18,18,17, 14,13,13,14,15,15,14, 14,13,13,14,15,15,14, 11,10,10,11,12,12,11, 11,10,10,11,12,12,11, 14,13,13,14,15,15,14, 17,16,16,17,18,18,17, 17,16,16,17,18,18,17, 14,13,13,14,15,15,14};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {3,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// CONSTANT mode 4D
TEST_F(DeclarableOpsTests12, pad_tests7)
{
float inBuff[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
int padBuff[] = {1, 1, 1, 1, 1, 1, 1, 1};
float expBuff[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 6, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 10, 0, 0, 11, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 0, 0, 15, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2, 2, 2, 2});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {4, 2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4, 4, 4, 4});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// REFLECT mode 4D
TEST_F(DeclarableOpsTests12, pad_tests8)
{
float inBuff[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
int padBuff[] = {1, 1, 1, 1, 1, 1, 1, 1};
float expBuff[] = {16, 15, 16, 15, 14, 13, 14, 13, 16, 15, 16, 15, 14, 13, 14, 13, 12, 11, 12, 11, 10, 9, 10, 9, 12, 11, 12, 11, 10, 9, 10, 9, 16, 15, 16, 15, 14, 13, 14, 13, 16, 15, 16, 15, 14, 13, 14, 13, 12, 11, 12, 11, 10, 9, 10, 9, 12, 11, 12, 11, 10, 9, 10, 9, 8, 7, 8, 7, 6, 5, 6, 5, 8, 7, 8, 7, 6, 5, 6, 5, 4, 3, 4, 3, 2, 1, 2, 1, 4, 3, 4, 3, 2, 1, 2, 1, 8, 7, 8, 7, 6, 5, 6, 5, 8, 7, 8, 7, 6, 5, 6, 5, 4, 3, 4, 3, 2, 1, 2, 1, 4, 3, 4, 3, 2, 1, 2, 1, 16, 15, 16, 15, 14, 13, 14, 13, 16, 15, 16, 15, 14, 13, 14, 13, 12, 11, 12, 11, 10, 9, 10, 9, 12, 11, 12, 11, 10, 9, 10, 9, 16, 15, 16, 15, 14, 13, 14, 13, 16, 15, 16, 15, 14, 13, 14, 13, 12, 11, 12, 11, 10, 9, 10, 9, 12, 11, 12, 11, 10, 9, 10, 9, 8, 7, 8, 7, 6, 5, 6, 5, 8, 7, 8, 7, 6, 5, 6, 5, 4, 3, 4, 3, 2, 1, 2, 1, 4, 3, 4, 3, 2, 1, 2, 1, 8, 7, 8, 7, 6, 5, 6, 5, 8, 7, 8, 7, 6, 5, 6, 5, 4, 3, 4, 3, 2, 1, 2, 1, 4, 3, 4, 3, 2, 1, 2, 1};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2, 2, 2, 2});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {4, 2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4, 4, 4, 4});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
//////////////////////////////////////////////////////////////////
// SYMMETRIC mode 4D
TEST_F(DeclarableOpsTests12, pad_tests9)
{
float inBuff[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
int padBuff[] = {1, 1, 1, 1, 1, 1, 1, 1};
float expBuff[] = {1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 8, 8, 5, 5, 6, 6, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 8, 8, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 8, 8, 5, 5, 6, 6, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 8, 8, 9, 9, 10, 10, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 12, 12, 9, 9, 10, 10, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 12, 12, 13, 13, 14, 14, 13, 13, 14, 14, 15, 15, 16, 16, 15, 15, 16, 16, 13, 13, 14, 14, 13, 13, 14, 14, 15, 15, 16, 16, 15, 15, 16, 16, 9, 9, 10, 10, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 12, 12, 9, 9, 10, 10, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 12, 12, 13, 13, 14, 14, 13, 13, 14, 14, 15, 15, 16, 16, 15, 15, 16, 16, 13, 13, 14, 14, 13, 13, 14, 14, 15, 15, 16, 16, 15, 15, 16, 16};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2, 2, 2, 2});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {4, 2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4, 4, 4, 4});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests10) {
auto input = NDArrayFactory::create<double>('c', {2,3,4});
auto paddings = NDArrayFactory::create<int>('c', {3,2}, {0,0, 0,1, 0,0});
auto expected = NDArrayFactory::create<double>('c', {2,4,4}, {1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,0.,0.,0.,0.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,0.,0.,0.,0.});
input = 1.f;
//input.assign(1.);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests11) {
auto input = NDArrayFactory::create<double>('c', {2,3,4});
auto paddings = NDArrayFactory::create<int>('c', {3,2}, {0,0, 0,1, 0,0});
auto expected = NDArrayFactory::create<double>('c', {2,4,4}, {1., 2., 3., 4., 5., 6., 7., 8., 9.,10.,11.,12., 5., 6., 7., 8.,13.,14.,15.,16.,17.,18.,19.,20.,21.,22.,23.,24.,17.,18.,19.,20.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests12) {
auto input = NDArrayFactory::create<double>('c', {2,3,4,5});
auto paddings = NDArrayFactory::create<int>('c', {4,2}, {0,0, 0,1, 0,1, 0,0});
auto expected = NDArrayFactory::create<double>('c', {2,4,5,5}, { 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 16., 17., 18., 19., 20.,
21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 36., 37., 38., 39., 40.,
41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 56., 57., 58., 59., 60.,
41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 56., 57., 58., 59., 60.,
61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 76., 77., 78., 79., 80.,
81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,100., 96., 97., 98., 99.,100.,
101.,102.,103.,104.,105.,106.,107.,108.,109.,110.,111.,112.,113.,114.,115.,116.,117.,118.,119.,120.,116.,117.,118.,119.,120.,
101.,102.,103.,104.,105.,106.,107.,108.,109.,110.,111.,112.,113.,114.,115.,116.,117.,118.,119.,120.,116.,117.,118.,119.,120.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests13) {
auto input = NDArrayFactory::create<double>('c', {5});
auto paddings = NDArrayFactory::create<int>('c', {1,2}, {2,3});
auto expected = NDArrayFactory::create<double>('c', {10}, {3., 2., 1., 2., 3., 4., 5., 4., 3., 2.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests14) {
auto input = NDArrayFactory::create<double>('c', {1,5});
auto paddings = NDArrayFactory::create<int>('c', {2,2}, {0,0,2,3});
auto expected = NDArrayFactory::create<double>('c', {1,10}, {2., 1., 1., 2., 3., 4., 5., 5., 4., 3.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests15) {
auto input = NDArrayFactory::create<double>('c', {1,5});
auto paddings = NDArrayFactory::create<int>('c', {2,2}, {1,1,0,0});
auto expected = NDArrayFactory::create<double>('c', {3,5}, {1., 2., 3., 4., 5., 1., 2., 3., 4., 5., 1., 2., 3., 4., 5.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests16) {
auto input = NDArrayFactory::create<double>('c', {5,1});
auto paddings = NDArrayFactory::create<int>('c', {2,2}, {2,3,0,0});
auto expected = NDArrayFactory::create<double>('c', {10,1}, {3., 2., 1., 2., 3., 4., 5., 4., 3., 2.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests17) {
auto input = NDArrayFactory::create<double>('c', {5,1});
auto paddings = NDArrayFactory::create<int>('c', {2,2}, {0,0,1,0});
auto expected = NDArrayFactory::create<double>('c', {5,2}, {1.,1., 2.,2., 3.,3., 4.,4., 5.,5.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests18) {
auto input = NDArrayFactory::create<double>('c', {5});
auto paddings = NDArrayFactory::create<int>('c', {1,2}, {0,0});
auto expected = NDArrayFactory::create<double>('c', {5}, {1.,2.,3.,4.,5.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests19) {
auto input = NDArrayFactory::create<double>('c', {5,1});
auto paddings = NDArrayFactory::create<int>('c', {2,2}, {0,0,0,0});
auto expected = NDArrayFactory::create<double>('c', {5,1}, {1., 2., 3., 4., 5.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests20) {
auto input = NDArrayFactory::create<double>('c', {1,5});
auto paddings = NDArrayFactory::create<int>('c', {2,2}, {0,0,0,0});
auto expected = NDArrayFactory::create<double>('c', {1,5}, {1., 2., 3., 4., 5.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests21) {
auto input = NDArrayFactory::create<double>('c', {1,3,1,5});
auto paddings = NDArrayFactory::create<int>('c', {4,2}, {0,0, 0,1, 0,1, 0,0});
auto expected = NDArrayFactory::create<double>('c', {1,4,2,5}, {1., 2., 3., 4., 5., 1., 2., 3., 4., 5., 6., 7., 8., 9.,10., 6., 7., 8., 9.,10.,
11.,12.,13.,14.,15.,11.,12.,13.,14.,15.,11.,12.,13.,14.,15.,11.,12.,13.,14.,15.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests22) {
auto input = NDArrayFactory::create<double>('c', {1,1});
auto paddings = NDArrayFactory::create<int>('c', {2,2}, {0,0, 0,0});
auto expected = NDArrayFactory::create<double>('c', {1,1}, {1.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests23) {
auto input = NDArrayFactory::create<double>('c', {1,1});
auto paddings = NDArrayFactory::create<int>('c', {2,2}, {0,0, 1,0});
auto expected = NDArrayFactory::create<double>('c', {1,2}, {0.,1.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printShapeInfo("r");
// expected.printShapeInfo("e");
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests24) {
auto input = NDArrayFactory::create<double>('c', {1});
auto paddings = NDArrayFactory::create<int>('c', {1,2}, {0,0});
auto expected = NDArrayFactory::create<double>('c', {1}, {1.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests25) {
auto input = NDArrayFactory::create<double>('c', {1});
auto paddings = NDArrayFactory::create<int>('c', {1,2}, {1,1});
auto expected = NDArrayFactory::create<double>('c', {3}, {1.,1.,1});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests26) {
auto input = NDArrayFactory::create<double>('c', {1});
auto paddings = NDArrayFactory::create<int>('c', {1,2}, {3,2});
auto expected = NDArrayFactory::create<double>('c', {6}, {0., 0., 0., 1., 0., 0.});
input.linspace(1.f);
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests27) {
NDArray input('c', {2,3}, nd4j::DataType::FLOAT32);
NDArray paddings('c', {2,2}, {0,0,0,1}, nd4j::DataType::INT32);
NDArray exp('c', {2,4}, {1,1,1,0,1,1,1,0}, nd4j::DataType::FLOAT32);
NDArray z('c', {2,4}, nd4j::DataType::FLOAT32);
input = 1.;
nd4j::ops::pad op;
Nd4jStatus status = op.execute({&input, &paddings}, {&z}, {0}, {0}, {}); // constant
// z.printIndexedBuffer();
ASSERT_EQ(ND4J_STATUS_OK, status);
ASSERT_TRUE(exp.isSameShapeStrict(&z));
ASSERT_TRUE(exp.equalsTo(z));
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests28) {
NDArray input('c', {1,111,111,32}, nd4j::DataType::FLOAT32);
NDArray paddings('c', {4,2}, {0,0,0,1,0,1,0,0}, nd4j::DataType::INT32);
NDArray z('c', {1,112,112,32}, nd4j::DataType::FLOAT32);
input = 1.;
nd4j::ops::pad op;
Nd4jStatus status = op.execute({&input, &paddings}, {&z}, {0}, {0}, {}); // constant
// z.printIndexedBuffer();
NDArray sum = z.reduceNumber(nd4j::reduce::Sum);
ASSERT_EQ(ND4J_STATUS_OK, status);
ASSERT_EQ(sum.e<float>(0), 111*111*32);
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests29) {
auto in = NDArrayFactory::create<double>({1., 1., 1., 1., 1.});
// auto pad = NDArrayFactory::create<double>('c', {1, 2}, {1., 1.});// = Nd4j.create(new double[]{1, 1}, new long[]{1, 2});
auto pad = NDArrayFactory::create<int>('c', {1, 2}, {1, 1});
// auto value(10.0);
auto exp = NDArrayFactory::create<double>({10., 1., 1., 1., 1., 1., 10.});
nd4j::ops::pad op;
auto res = op.execute({&in, &pad}, {10.0}, {0});
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
ASSERT_TRUE(exp.equalsTo(res->at(0)));
delete res;
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests30) {
auto in = NDArrayFactory::create<double>({1., 11., 111., 11., 1.});
auto pad = NDArrayFactory::create<int>('c', {1, 2}, {1, 1});
auto exp = NDArrayFactory::create<double>({1., 1., 11., 111., 11., 1., 1.});
nd4j::ops::pad op;
auto res = op.execute({&in, &pad}, {10.0}, {2});
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
ASSERT_TRUE(exp.equalsTo(res->at(0)));
delete res;
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests31) {
auto in = NDArrayFactory::create<double>({1., 11., 111., 1111., 11111.});
// auto pad = NDArrayFactory::create<double>('c', {1, 2}, {1., 1.});// = Nd4j.create(new double[]{1, 1}, new long[]{1, 2});
auto pad = NDArrayFactory::create<int>('c', {1, 2}, {1, 1});
// auto value(10.0);
auto exp = NDArrayFactory::create<double>({11., 1., 11., 111., 1111., 11111., 1111.});
nd4j::ops::pad op;
auto res = op.execute({&in, &pad}, {10.0}, {1});
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
ASSERT_TRUE(exp.equalsTo(res->at(0)));
delete res;
}
///////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests32) {
auto in = NDArrayFactory::create<double>('c', {3,3}, {1., 2., 3., 4., 5.,6,7,8,9});
auto pad = NDArrayFactory::create<int>('c', {2,2}, {1, 2, 2, 3});
auto exp = NDArrayFactory::create<double>('c', {6,8}, {2, 1, 1, 2, 3, 3, 2, 1, 2, 1, 1, 2, 3, 3, 2, 1, 5, 4, 4, 5, 6, 6, 5, 4, 8, 7, 7, 8, 9, 9, 8, 7, 8, 7, 7, 8, 9, 9, 8, 7, 5, 4, 4, 5, 6, 6, 5, 4});
nd4j::ops::pad op;
auto res = op.execute({&in, &pad}, {10.0}, {2});
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
ASSERT_TRUE(exp.equalsTo(res->at(0)));
delete res;
}
///////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests33) {
auto in = NDArrayFactory::create<double>('c', {2,3,4}, {1, 2, 3, 4,5, 6, 7, 8,9,10,11,12,13, 14, 15, 16,17, 18, 19, 20,21, 22, 23, 24});
auto pad = NDArrayFactory::create<int>('c', {3,2}, {1, 2, 2, 3, 3,3});
auto exp = NDArrayFactory::create<double>('c', {5,8,10}, { 7,6,5,5,6,7,8,8,7,6., 3,2,1,1,2,3,4,4,3,2., 3,2,1,1,2,3,4,4,3,2., 7,6,5,5,6,7,8,8,7,6., 11,10,9,9,10,11,12,12,11,10.,
11,10,9,9,10,11,12,12,11,10., 7,6,5,5,6,7,8,8,7,6., 3,2,1,1,2,3,4,4,3,2., 7,6,5,5,6,7,8,8,7,6., 3,2,1,1,2,3,4,4,3,2.,
3,2,1,1,2,3,4,4,3,2., 7,6,5,5,6,7,8,8,7,6., 11,10,9,9,10,11,12,12,11,10., 11,10,9,9,10,11,12,12,11,10.,7,6,5,5,6,7,8,8,7,6.,
3,2,1,1,2,3,4,4,3,2., 19,18,17,17,18,19,20,20,19,18., 15,14,13,13,14,15,16,16,15,14., 15,14,13,13,14,15,16,16,15,14.,
19,18,17,17,18,19,20,20,19,18., 23,22,21,21,22,23,24,24,23,22., 23,22,21,21,22,23,24,24,23,22., 19,18,17,17,18,19,20,20,19,18.,
15,14,13,13,14,15,16,16,15,14., 19,18,17,17,18,19,20,20,19,18., 15,14,13,13,14,15,16,16,15,14., 15,14,13,13,14,15,16,16,15,14.,
19,18,17,17,18,19,20,20,19,18., 23,22,21,21,22,23,24,24,23,22., 23,22,21,21,22,23,24,24,23,22., 19,18,17,17,18,19,20,20,19,18.,
15,14,13,13,14,15,16,16,15,14., 7,6,5,5,6,7,8,8,7,6., 3,2,1,1,2,3,4,4,3,2., 3,2,1,1,2,3,4,4,3,2., 7,6,5,5,6,7,8,8,7,6.,
11,10,9,9,10,11,12,12,11,10., 11,10,9,9,10,11,12,12,11,10., 7,6,5,5,6,7,8,8,7,6., 3,2,1,1,2,3,4,4,3,2.});
nd4j::ops::pad op;
auto res = op.execute({&in, &pad}, {10.0}, {2});
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
ASSERT_TRUE(exp.equalsTo(res->at(0)));
delete res;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, pad_tests34) {
NDArray input('c', {5}, {0.778786, 0.801198, 0.724375, 0.230894, 0.727141}, nd4j::DataType::FLOAT32);
NDArray paddings('c', {1,2}, {1,1}, nd4j::DataType::INT32);
NDArray expected('c', {7}, {10., 0.778786, 0.801198, 0.724375, 0.230894, 0.727141, 10.}, nd4j::DataType::FLOAT32);
NDArray z('c', {7}, nd4j::DataType::FLOAT32);
nd4j::ops::pad op;
Nd4jStatus status = op.execute({&input, &paddings}, {&z}, {10}, {0}, {}); // constant
ASSERT_EQ(ND4J_STATUS_OK, status);
ASSERT_TRUE(expected.isSameShapeStrict(&z));
ASSERT_TRUE(expected.equalsTo(z));
}
////////////////////////////////////////////////////////////////////
// CONSTANT mode 2D
TEST_F(DeclarableOpsTests12, Pad_1) {
float inBuff[] = {1,2,3,4,5,6};
int padBuff[] = {1,1,2,2};
float expBuff[] = {0,0,0,0,0,0,0, 0,0,1,2,3,0,0, 0,0,4,5,6,0,0, 0,0,0,0,0,0,0};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {2,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// REFLECT mode 2D
TEST_F(DeclarableOpsTests12, Pad_2) {
float inBuff[] = {1,2,3,4,5,6};
int padBuff[] = {1,1,2,2};
float expBuff[] = {6,5,4,5,6,5,4, 3,2,1,2,3,2,1, 6,5,4,5,6,5,4, 3,2,1,2,3,2,1};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {2,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// SYMMETRIC mode 2D
TEST_F(DeclarableOpsTests12, Pad_3) {
float inBuff[] = {1,2,3,4,5,6};
int padBuff[] = {1,1,2,2};
float expBuff[] = {2,1,1,2,3,3,2, 2,1,1,2,3,3,2, 5,4,4,5,6,6,5, 5,4,4,5,6,6,5};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {2,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// CONSTANT mode 3D
TEST_F(DeclarableOpsTests12, Pad_4) {
float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18};
int padBuff[] = {1,1,2,2,2,2};
float expBuff[] = {0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 1, 2, 3,0,0,0,0, 4, 5, 6,0,0,0,0, 7, 8, 9,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0,10,11,12,0,0,0,0,13,14,15,0,0,0,0,16,17,18,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0,0,0, 0, 0, 0,0,0};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {3,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// REFLECT mode 3D
TEST_F(DeclarableOpsTests12, Pad_5) {
float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18};
int padBuff[] = {1,1,2,2,2,2};
float expBuff[] = {18,17,16,17,18,17,16, 15,14,13,14,15,14,13, 12,11,10,11,12,11,10, 15,14,13,14,15,14,13, 18,17,16,17,18,17,16, 15,14,13,14,15,14,13, 12,11,10,11,12,11,10, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 2, 1, 6, 5, 4, 5, 6, 5, 4, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 2, 1, 18,17,16,17,18,17,16, 15,14,13,14,15,14,13, 12,11,10,11,12,11,10, 15,14,13,14,15,14,13, 18,17,16,17,18,17,16, 15,14,13,14,15,14,13, 12,11,10,11,12,11,10, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 2, 1, 6, 5, 4, 5, 6, 5, 4, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 2, 1};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {3,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// SYMMETRIC mode 3D
TEST_F(DeclarableOpsTests12, Pad_6) {
float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18};
int padBuff[] = {1,1,2,2,2,2};
float expBuff[] = {5, 4, 4, 5, 6, 6, 5, 2, 1, 1, 2, 3, 3, 2, 2, 1, 1, 2, 3, 3, 2, 5, 4, 4, 5, 6, 6, 5, 8, 7, 7, 8, 9, 9, 8, 8, 7, 7, 8, 9, 9, 8, 5, 4, 4, 5, 6, 6, 5, 5, 4, 4, 5, 6, 6, 5, 2, 1, 1, 2, 3, 3, 2, 2, 1, 1, 2, 3, 3, 2, 5, 4, 4, 5, 6, 6, 5, 8, 7, 7, 8, 9, 9, 8, 8, 7, 7, 8, 9, 9, 8, 5, 4, 4, 5, 6, 6, 5, 14,13,13,14,15,15,14, 11,10,10,11,12,12,11, 11,10,10,11,12,12,11, 14,13,13,14,15,15,14, 17,16,16,17,18,18,17, 17,16,16,17,18,18,17, 14,13,13,14,15,15,14, 14,13,13,14,15,15,14, 11,10,10,11,12,12,11, 11,10,10,11,12,12,11, 14,13,13,14,15,15,14, 17,16,16,17,18,18,17, 17,16,16,17,18,18,17, 14,13,13,14,15,15,14};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2,3,3});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {3,2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4,7,7});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// CONSTANT mode 4D
TEST_F(DeclarableOpsTests12, Pad_7)
{
float inBuff[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
int padBuff[] = {1, 1, 1, 1, 1, 1, 1, 1};
float expBuff[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 6, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 10, 0, 0, 11, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 0, 0, 15, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2, 2, 2, 2});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {4, 2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4, 4, 4, 4});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
// REFLECT mode 4D
TEST_F(DeclarableOpsTests12, Pad_8)
{
float inBuff[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
int padBuff[] = {1, 1, 1, 1, 1, 1, 1, 1};
float expBuff[] = {16, 15, 16, 15, 14, 13, 14, 13, 16, 15, 16, 15, 14, 13, 14, 13, 12, 11, 12, 11, 10, 9, 10, 9, 12, 11, 12, 11, 10, 9, 10, 9, 16, 15, 16, 15, 14, 13, 14, 13, 16, 15, 16, 15, 14, 13, 14, 13, 12, 11, 12, 11, 10, 9, 10, 9, 12, 11, 12, 11, 10, 9, 10, 9, 8, 7, 8, 7, 6, 5, 6, 5, 8, 7, 8, 7, 6, 5, 6, 5, 4, 3, 4, 3, 2, 1, 2, 1, 4, 3, 4, 3, 2, 1, 2, 1, 8, 7, 8, 7, 6, 5, 6, 5, 8, 7, 8, 7, 6, 5, 6, 5, 4, 3, 4, 3, 2, 1, 2, 1, 4, 3, 4, 3, 2, 1, 2, 1, 16, 15, 16, 15, 14, 13, 14, 13, 16, 15, 16, 15, 14, 13, 14, 13, 12, 11, 12, 11, 10, 9, 10, 9, 12, 11, 12, 11, 10, 9, 10, 9, 16, 15, 16, 15, 14, 13, 14, 13, 16, 15, 16, 15, 14, 13, 14, 13, 12, 11, 12, 11, 10, 9, 10, 9, 12, 11, 12, 11, 10, 9, 10, 9, 8, 7, 8, 7, 6, 5, 6, 5, 8, 7, 8, 7, 6, 5, 6, 5, 4, 3, 4, 3, 2, 1, 2, 1, 4, 3, 4, 3, 2, 1, 2, 1, 8, 7, 8, 7, 6, 5, 6, 5, 8, 7, 8, 7, 6, 5, 6, 5, 4, 3, 4, 3, 2, 1, 2, 1, 4, 3, 4, 3, 2, 1, 2, 1};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2, 2, 2, 2});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {4, 2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4, 4, 4, 4});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
//////////////////////////////////////////////////////////////////
// SYMMETRIC mode 4D
TEST_F(DeclarableOpsTests12, Pad_9)
{
float inBuff[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
int padBuff[] = {1, 1, 1, 1, 1, 1, 1, 1};
float expBuff[] = {1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 8, 8, 5, 5, 6, 6, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 8, 8, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 8, 8, 5, 5, 6, 6, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 8, 8, 9, 9, 10, 10, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 12, 12, 9, 9, 10, 10, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 12, 12, 13, 13, 14, 14, 13, 13, 14, 14, 15, 15, 16, 16, 15, 15, 16, 16, 13, 13, 14, 14, 13, 13, 14, 14, 15, 15, 16, 16, 15, 15, 16, 16, 9, 9, 10, 10, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 12, 12, 9, 9, 10, 10, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 12, 12, 13, 13, 14, 14, 13, 13, 14, 14, 15, 15, 16, 16, 15, 15, 16, 16, 13, 13, 14, 14, 13, 13, 14, 14, 15, 15, 16, 16, 15, 15, 16, 16};
auto input = NDArrayFactory::create<float>(inBuff, 'c', {2, 2, 2, 2});
auto paddings = NDArrayFactory::create<int>(padBuff, 'c', {4, 2});
auto expected = NDArrayFactory::create<float>(expBuff, 'c', {4, 4, 4, 4});
nd4j::ops::pad op;
auto results = op.execute({&input, &paddings}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto *result = results->at(0);
// result->printIndexedBuffer();
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
TEST_F(DeclarableOpsTests12, Test_Expose_1) {
auto input0 = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 3, 6, 5, 4});
auto input1 = NDArrayFactory::create<float>('c', {2, 3}, {3, 2, 1, 4, 5, 6});
nd4j::ops::expose op;
auto result = op.execute({&input0, &input1}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
auto z0 = result->at(0);
auto z1 = result->at(1);
ASSERT_TRUE(input0.equalsTo(z0));
ASSERT_TRUE(input1.equalsTo(z1));
delete result;
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests12, Pad_SGO_Test_1) {
auto in = NDArrayFactory::create<double>({1., 1., 1., 1., 1.});
// auto pad = NDArrayFactory::create<double>('c', {1, 2}, {1., 1.});// = Nd4j.create(new double[]{1, 1}, new long[]{1, 2});
auto pad = NDArrayFactory::create<int>('c', {1, 2}, {1, 1});
// auto value(10.0);
auto exp = NDArrayFactory::create<double>({10., 1., 1., 1., 1., 1., 10.});
nd4j::ops::pad op;
auto res = op.execute({&in, &pad}, {10.0}, {0});
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
// res->at(0)->printIndexedBuffer("PAD_SGO");
// exp.printIndexedBuffer("PAD_EXP");
ASSERT_TRUE(exp.equalsTo(res->at(0)));
delete res;
}