cavis/libnd4j/include/ops/declarable/helpers/cpu/transforms.cpp

1273 lines
54 KiB
C++
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <NDArrayFactory.h>
#include <helpers/TAD.h>
#include <helpers/ConstantTadHelper.h>
#include <Loops.h>
namespace nd4j {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void triuBP_(nd4j::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int diagonal) {
auto dOdI = NDArray(&gradO); // dO/dI
const_cast<NDArray&>(input).fillAsTriangular<T>(0, diagonal, dOdI.sizeAt(-1), 'b', &dOdI);
int dLen = dOdI.lengthOf();
PRAGMA_OMP_PARALLEL_FOR_IF(dLen > Environment::getInstance()->elementwiseThreshold())
for(int i = 0; i < dLen; ++i) {
[WIP] more CUDA stuff (#57) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Added gradcheck test for dynamic_partition_bp op. * - implementation of dilation op (cpu and cuda) Signed-off-by: Yurii <yurii@skymind.io> * Fixed broadcast_dynamic_shape 1D case and tests. * Fixed usage of default integer arguments. * Fixed dynamic_partition_bp op and tests. * Eliminated test with grad check for dynamic_partition_bp op. * start working on cuda svd - porting available corresponding api from cuSOLVER library Signed-off-by: Yurii <yurii@skymind.io> * provide prelu_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide gruCell_bp (old version ??) Signed-off-by: Yurii <yurii@skymind.io> * - polishing cumsum_bp and cumprod_bp tests Signed-off-by: Yurii <yurii@skymind.io> * provide sparseSoftmaxCrossEntropyWithLogits and sparseSoftmaxCrossEntropyWithLogits_grad Signed-off-by: Yurii <yurii@skymind.io> * Fixed atomicMul with float input/output * implementation of cuda kernel for triu_bp operation Signed-off-by: Yurii <yurii@skymind.io> * Refactored lup helper to add parrallel computing. * cusolver libraries Signed-off-by: raver119 <raver119@gmail.com> * uncomment cuSolver APIs in svd.cu Signed-off-by: Yurii <yurii@skymind.io> * cusolver var Signed-off-by: raver119 <raver119@gmail.com> * - further work on cuSolver svd Signed-off-by: Yurii <yurii@skymind.io> * Implement usage of cuda solver to LUP decomposition. * - correct naames in lup functions Signed-off-by: Yurii <yurii@skymind.io> * correct svdQR cuda Signed-off-by: Yurii <yurii@skymind.io> * - provide transpositions of input matrices in case of c order in svdCudaQR Signed-off-by: Yurii <yurii@skymind.io> * Fixed implementation issues with LUP usign cuda solver. * Implementation of matrix_determinant helper with cuda kernels. Working revision. * Implemented log_matrix_determinant helper with cuda kernels. * - implementation of batched cuda svd Signed-off-by: Yurii <yurii@skymind.io> * Refactored cholesky helper and implementation of cuda solver cholesky batch. * - implementation of cuda kernel for tile bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cholesky and logdet with cuda kernels. * - implementation of cuda kernel for sru_bidirectional Signed-off-by: Yurii <yurii@skymind.io> * Fixed cholesky helper. * Cholesky op helper implementation. Working double-based cublas implementation. * bad import excluded Signed-off-by: raver119 <raver119@gmail.com> * Finished with cuda implementation of cholesky helper and tests. * - implementation of cuda kernel for sru_bidirectional_backprop operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse op helper with cuda kernels. The first revision. * - start working on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse helper. * - further work on new gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * cuBLAS related fixes Signed-off-by: raver119 <raver119@gmail.com> * calculateOutputShapes() now passes device buffers as well Signed-off-by: raver119 <raver119@gmail.com> * special concat/average/accumulate init host pointers now Signed-off-by: raver119 <raver119@gmail.com> * few more tweaks Signed-off-by: raver119 <raver119@gmail.com> * additional CudaDataBufferFactory signatures certain for data types Signed-off-by: raver119 <raver119@gmail.com> * cuSolver host buffer Signed-off-by: raver119 <raver119@gmail.com> * buffer to buffer memcpy host ptr allocation Signed-off-by: raver119 <raver119@gmail.com>
2019-07-12 10:51:51 +02:00
if(dOdI.t<T>(i) != static_cast<T>(0.f))
dOdI.t<T>(i) = static_cast<T>(1.f);
2019-06-06 14:21:15 +02:00
}
// FIXME: !!!
gradI.assign(dOdI * gradO); // chain rule: dLoss/dI = dO/dI * dLoss/dO
}
void triuBP(nd4j::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int diagonal) {
BUILD_SINGLE_SELECTOR(gradO.dataType(), triuBP_, (context, input, gradO, gradI, diagonal), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void triuBP_, (nd4j::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int diagonal), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void trace_(const NDArray& input, NDArray& output) {
const int inRank = input.rankOf();
auto setOfSubArrs = input.allTensorsAlongDimension({inRank-2, inRank-1});
PRAGMA_OMP_PARALLEL_FOR_IF(setOfSubArrs->size() > Environment::getInstance()->tadThreshold())
for(int i = 0; i < setOfSubArrs->size(); ++i)
output.p(i, setOfSubArrs->at(i)->getTrace());
delete setOfSubArrs;
}
void trace(nd4j::LaunchContext * context, const NDArray& input, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), trace_, (input, output), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void trace_, (const NDArray& input, NDArray& output), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
template <typename T>
void randomShuffle_(NDArray& input, NDArray& output, nd4j::random::RandomBuffer& rng, const bool isInplace) {
// check edge cases first
int temp;
const int firstDim = input.sizeAt(0);
if(input.lengthOf() == 1 || firstDim == 1) {
if(!isInplace)
output.assign(input);
}
else if (input.isVector() || shape::isLikeVector(input.getShapeInfo(), temp)) {
// apply Fisher-Yates shuffle
if(isInplace) {
PRAGMA_OMP_PARALLEL_FOR_IF((firstDim-1) > Environment::getInstance()->tadThreshold())
for(int i = firstDim-1; i > 0; --i) {
int r = rng.nextInt(0, i);
if(i == r)
continue;
T _e0 = input.e<T>(i);
T _e1 = input.e<T>(r);
//math::nd4j_swap<T>(input(i), input(r));
input.p<T>(i, _e1);
input.p<T>(r, _e0);
}
}
else {
std::vector<int> indices(firstDim);
std::iota(indices.begin(), indices.end(), 0);
output.p<T>(Nd4jLong(0), input.e<T>(0));
PRAGMA_OMP_PARALLEL_FOR_IF((firstDim-1) > Environment::getInstance()->tadThreshold())
for(int i = firstDim-1; i > 0; --i) {
int r = rng.nextInt(0, i);
output.p(i, input.e<T>(indices[r]));
if(i == r)
continue;
output.p(r, input.e<T>(indices[i]));
math::nd4j_swap<int>(indices[i], indices[r]);
}
rng.rewindH(firstDim-1);
}
}
else {
// evaluate sub-arrays list of input array through all dimensions excluding first one
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input.rankOf(), {0});
auto subArrsListIn = input.allTensorsAlongDimension(dimensions);
// apply Fisher-Yates shuffle
if(isInplace) {
PRAGMA_OMP_PARALLEL_FOR_IF((firstDim-1) > Environment::getInstance()->elementwiseThreshold())
for(int i = firstDim-1; i > 0; --i) {
int r = rng.nextInt(0, i);
if(i == r)
continue;
subArrsListIn->at(i)->swapUnsafe(*subArrsListIn->at(r));
}
}
else {
// evaluate sub-arrays list of output array through all dimensions excluding first one
auto subArrsListOut = output.allTensorsAlongDimension(dimensions);
std::vector<int> indices(firstDim);
std::iota(indices.begin(), indices.end(), 0);
bool isZeroShuffled = false;
PRAGMA_OMP_PARALLEL_FOR_IF((firstDim-1) > Environment::getInstance()->tadThreshold())
for(int i = firstDim-1; i > 0; --i) {
int r = rng.nextInt(0, i);
subArrsListOut->at(i)->assign(subArrsListIn->at(indices[r]));
if(r == 0)
isZeroShuffled = true;
if(i == r)
continue;
subArrsListOut->at(r)->assign(subArrsListIn->at(indices[i]));
math::nd4j_swap<int>(indices[i], indices[r]);
}
if(!isZeroShuffled)
subArrsListOut->at(0)->assign(subArrsListIn->at(0));
delete subArrsListOut;
}
rng.rewindH(firstDim-1);
delete subArrsListIn;
}
}
void randomShuffle(nd4j::LaunchContext * context, NDArray& input, NDArray& output, nd4j::random::RandomBuffer& rng, const bool isInplace) {
BUILD_SINGLE_SELECTOR(input.dataType(), randomShuffle_, (input, output, rng, isInplace), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void randomShuffle_, (NDArray& input, NDArray& output, nd4j::random::RandomBuffer& rng, const bool isInplace), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
void pad_(const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, const NDArray& padValue) {
const T* x = input.bufferAsT<T>();
T* z = output.bufferAsT<T>();
const Nd4jLong* xShape = input.shapeOf();
const Nd4jLong* zShape = output.shapeOf();
const Nd4jLong* xStride = input.stridesOf();
const Nd4jLong* zStride = output.stridesOf();
const int rank = input.rankOf(); // both input and output have the same rank
const int rankMinusOne = rank - 1;
const auto zLen = output.lengthOf();
std::vector<Nd4jLong> coords(rank); // we use the same coordinates storage both for input and output since their ranks are the same
if(mode == 0) { // CONSTANT case
const T padVal = padValue.e<T>(0);
PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(coords))
for(uint i = 0; i < zLen; ++i) {
shape::index2coords(rank, zShape, i, zLen, coords.data());
const auto zOffset = shape::getOffset(0, zShape, zStride, coords.data(), rank);
bool within = true;
for(int j = rankMinusOne; j >= 0; --j) {
if(xShape[j] == zShape[j]) continue;
const auto left = paddings.e<Nd4jLong>(j, 0);
if(coords[j] < left || coords[j] >= left + xShape[j]) {within = false; break;}
else {coords[j] = coords[j] - left;}
}
if(within)
z[zOffset] = x[shape::getOffset(0, xShape, xStride, coords.data(), rank)];
else
z[zOffset] = padVal;
}
}
else { // REFLECT and SYMMETRIC cases
const Nd4jLong shift1 = mode == 1 ? 0 : 1; // REFLECT : SYMMETRIC
const Nd4jLong shift2 = mode == 1 ? 2 : 1; // REFLECT : SYMMETRIC
PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(coords))
for(uint i = 0; i < zLen; ++i) {
shape::index2coords(rank, zShape, i, zLen, coords.data());
const auto zOffset = shape::getOffset(0, zShape, zStride, coords.data(), rank);
for(int j = rankMinusOne; j >= 0; --j) {
if(xShape[j] == zShape[j]) continue;
coords[j] = coords[j] - paddings.e<Nd4jLong>(j, 0); // are ready to fill middle (within input dimension range)
if(coords[j] < 0) coords[j] = -coords[j] - shift1; // means fill from left
else if(coords[j] >= xShape[j]) coords[j] = 2 * xShape[j] - coords[j] - shift2; // means fill from right
}
const auto xOffset = shape::getOffset(0, xShape, xStride, coords.data(), rank);
z[zOffset] = x[xOffset];
}
}
}
// //////////////////////////////////////////////////////////////////////////
// template<typename T>
// void pad2_(const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue) {
// const int rank = output.rankOf();
// std::vector<int> dimsToExclude(rank);
// std::iota(dimsToExclude.begin(), dimsToExclude.end(), 0); // fill with 0, 1, ... rank-1
// Nd4jLong numLeft = paddings.e<Nd4jLong>(rank-1,0);
// Nd4jLong numRight = paddings.e<Nd4jLong>(rank-1,1);
// Nd4jLong inDimSize = input.sizeAt(rank-1);
// Nd4jLong outDimSize = output.sizeAt(rank-1);
// std::vector<std::vector<Nd4jLong>> outIdx = { std::vector<Nd4jLong>(2*rank), {numLeft, numLeft + inDimSize}, {0, numLeft}, {numLeft + inDimSize, outDimSize} };
// for(int i = 0; i < rank-1; ++i) {
// outIdx[0][2*i] = paddings.e<Nd4jLong>(i, 0);
// outIdx[0][2*i + 1] = outIdx[0][2*i] + input.sizeAt(i);
// }
// outIdx[0][2*rank-1] = outIdx[0][2*rank-2] = 0;
// // ***** populate innermost sub-arrays firstly ***** //
// dimsToExclude.pop_back();
// Nd4jLong startL = mode == 1 ? 1 : 0; // REFLECT or SYMMETRIC
// Nd4jLong startR = mode == 1 ? inDimSize-2 : inDimSize-1; // REFLECT or SYMMETRIC
// Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.getShapeInfo(), dimsToExclude);
// NDArray outSubArr0 = output(outIdx[0], true);
// PRAGMA_OMP_PARALLEL_FOR
// for(Nd4jLong j = 0; j < numOfSubArrs; ++j) {
// NDArray outSubArr1 = outSubArr0(j, dimsToExclude);
// NDArray inSubArr = input(j, dimsToExclude);
// NDArray outSubArrMid = outSubArr1(outIdx[1]);
// outSubArrMid.assign(inSubArr); // assign middle
// if(mode == 0) { // CONSTANT
// if(numLeft != 0) {
// NDArray temp = outSubArr1(outIdx[2]);
// temp.assign(padValue); // assign left
// }
// if(numRight != 0) {
// NDArray temp = outSubArr1(outIdx[3]);
// temp.assign(padValue); // assign right
// }
// }
// else { // REFLECT or SYMMETRIC
// for(Nd4jLong k = numLeft-1, e = startL; k >= 0; --k, ++e) // fill left side
// outSubArr1.t<T>(k) = inSubArr.t<T>(e);
// for(Nd4jLong k = numLeft + inDimSize, e = startR; k < outDimSize; ++k, --e) // fill right side
// outSubArr1.t<T>(k) = inSubArr.t<T>(e);
// }
// }
// // ***** fill rest of outer sub-arrays ***** //
// std::vector<Nd4jLong> outIdxInner(2, 0);
// std::vector<Nd4jLong> outIdxOuter(2, 0);
// for(int i = rankBorder - 1; i >= 0; --i) {
// dimsToExclude.pop_back();
// outIdxInner.push_back(0), outIdxInner.push_back(0);
// outIdxOuter.push_back(0), outIdxOuter.push_back(0);
// Nd4jLong numLeft = paddings.e<Nd4jLong>(i, 0);
// Nd4jLong numRight = paddings.e<Nd4jLong>(i, 1);
// if(numLeft == 0 && numRight == 0)
// continue;
// Nd4jLong inDimSize = input.sizeAt(i);
// Nd4jLong outDimSize = output.sizeAt(i);
// if(mode == 0) {
// outIdxOuter[0] = 0; outIdxOuter[1] = numLeft;
// outIdxInner[0] = numLeft + inDimSize; outIdxInner[1] = outDimSize;
// }
// startL = mode == 1 ? numLeft + 1 : numLeft; // REFLECT or SYMMETRIC
// startR = mode == 1 ? numLeft + inDimSize - 2 : numLeft + inDimSize-1; // REFLECT or SYMMETRIC
// numOfSubArrs = ShapeUtils::getNumOfSubArrs(output.getShapeInfo(), dimsToExclude);
// PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(outIdxOuter, outIdxInner))
// for(Nd4jLong j = 0; j < numOfSubArrs; ++j) {
// NDArray outSubArr = output(j, dimsToExclude);
// if(mode == 0) { // CONSTANT
// if(numLeft != 0) {
// NDArray tempO = outSubArr(outIdxOuter);
// tempO.assign(padValue); // assign left
// }
// if(numRight != 0) {
// NDArray tempI = outSubArr(outIdxInner);
// tempI.assign(padValue); // assign right
// }
// }
// else { // REFLECT or SYMMETRIC
// for(Nd4jLong k = numLeft-1, e = startL; k >= 0; --k, ++e) { // fill left side
// outIdxOuter[0] = k;
// outIdxOuter[1] = k+1;
// outIdxInner[0] = e;
// outIdxInner[1] = e+1;
// NDArray outSubArrInner = outSubArr(outIdxInner);
// NDArray outSubArrOuter = outSubArr(outIdxOuter);
// outSubArrOuter.assign(outSubArrInner);
// }
// for(Nd4jLong k = numLeft + inDimSize, e = startR; k < outDimSize; ++k, --e) { // fill right side
// outIdxOuter[0] = k;
// outIdxOuter[1] = k+1;
// outIdxInner[0] = e;
// outIdxInner[1] = e+1;
// NDArray outSubArrInner = outSubArr(outIdxInner);
// NDArray outSubArrOuter = outSubArr(outIdxOuter);
// outSubArrOuter.assign(outSubArrInner);
// }
// }
// }
// }
// }
void pad(nd4j::LaunchContext * context, const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue) {
BUILD_SINGLE_SELECTOR(input.dataType(), pad_, (mode, input, paddings, output, padValue), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void pad_, (const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue), LIBND4J_TYPES);
////////////////////////////////////////////////////////////////////////
/*// initial values of inIdx, outIdx, dim must be equal to zero
template<typename T>
static void recursiveLoopForPad_(const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue ) {
int leftOffset;
// dimensions are array of input dimensions, it is sorted in increasing order
// every time at the beginning we erase first element from it (not good idea to use vector for this purpose, but luckily it is small enough)
// then we use this array for tads building, every time while recursion the number of built tads becomes bigger
dimensions.erase(dimensions.begin());
// build tad basing on output array, also create auxiliary arrays pointing on required output array ranges
shape::TAD tadOut(output.getShapeInfo(), dimensions.data(), dimensions.size());
tadOut.createTadOnlyShapeInfo();
tadOut.createOffsets();
auto subArrOut = NDArray(output.getBuffer(), tadOut.tadOnlyShapeInfo, output.getContext());
auto subArr = NDArray(output.getBuffer(), tadOut.tadOnlyShapeInfo, output.getContext());
// build tad basing on input array, also create auxiliary array pointing on required input array range
shape::TAD tadIn(input.getShapeInfo(), dimensions.data(), dimensions.size());
tadIn.createTadOnlyShapeInfo();
tadIn.createOffsets();
auto subArrIn = NDArray(input.getBuffer(), tadIn.tadOnlyShapeInfo, output.getContext());
// these indices take into account recursion and always point to actual tads numbers
if (input.rankOf() > 1 && output.rankOf() > 1) {// only for non-vector cases
outIdx = outIdx * output.sizeAt(dim + 1);
inIdx = inIdx * input.sizeAt(dim + 1);
}
// current input tad number, we add to it unity in a loop
int k = -1;
// loop through current dimension
for(int i = 0; i < output.sizeAt(dim); ++i) {
// corresponds to outer range (relevant indices are absent in input)
leftOffset = paddings.e<int>(dim, 0);
if(i < leftOffset || i >= (input.sizeAt(dim) + leftOffset))
continue;
// increase input tads number
++k;
// recursion condition allows for the fact that tad can't reduce to scalar
if(dim < input.rankOf() - 2)
recursiveLoopForPad(mode, input, paddings, output, dimensions, dim + 1, inIdx + k, outIdx + i, padValue);
else if (paddings.sizeAt(0) > dim + 1){
leftOffset = paddings.e<int>(dim + 1, 0);
// shift buffers pointers to actual element position
if (output.rankOf() > 1) {
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + i]);
subArrIn.setBuffer(reinterpret_cast<T*>(input.getBuffer()) + tadIn.tadOffsets[inIdx + i - paddings.e<int>(dim, 0)]);
}
else {
subArrOut.p(i, subArrIn.e<T>(i - leftOffset));
}
// most inner loop, corresponds to last dim = rank-1
switch (mode) {
case 0: // CONSTANT mode
for(int j = 0; j < subArrOut.lengthOf(); ++j)
if(j < leftOffset || j >= (subArrIn.lengthOf() + leftOffset) ) // firstly fill with zeros outer ranges
subArrOut.p(j, (T)0.f);
else
subArrOut.p(j, subArrIn.e<T>(j - leftOffset)); // fill middle with elements of input array
break;
case 1: // REFLECT mode
for(int j = 1; j <= leftOffset; ++j) // fill firstly left side
subArrOut.p(leftOffset - j, subArrIn.e<T>(j));
for(int j = 0; j < subArrIn.lengthOf(); ++j) // fill middle
subArrOut.p(leftOffset + j, subArrIn.e<T>(j));
for(int j = (subArrOut.lengthOf() - leftOffset); j < subArrOut.lengthOf(); ++j) // fill right side
subArrOut.p(j, subArrIn.e<T>(subArrOut.lengthOf() - j - 1));
break;
case 2: // SYMMETRIC mode
for(int j = 1; j <= leftOffset; ++j) // fill firstly left side
subArrOut.p(leftOffset - j, subArrIn.e<T>(j-1));
for(int j = 0; j < subArrIn.lengthOf(); ++j) // fill middle
subArrOut.p(leftOffset + j, subArrIn.e<T>(j));
for(int j = (subArrOut.lengthOf() - leftOffset); j < subArrOut.lengthOf(); ++j) // fill right side
subArrOut.p(j, subArrIn.e<T>(subArrOut.lengthOf() - j));
break;
}
}
else {
if (mode == 0 && input.rankOf() < 2)
subArrOut.p(i, subArrIn.e<T>(i - leftOffset)); // fill middle with elements of input array
}
}
// populate sub-array formed previously
leftOffset = paddings.e<int>(dim,0);
switch (mode) {
case 0: // CONSTANT mode
for(int j = 1; j <= leftOffset; ++j) {
// fill left side with padValue
if (output.rankOf() > 1) {
subArrOut.setBuffer(
reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(padValue);
}
else {
subArrOut.p(j - 1, padValue);
}
}
// output.printIndexedBuffer("Output at");
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill left side with zeros
if (output.rankOf() > 1) {
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(padValue);
}
else {
subArrOut.p(j, padValue);
}
}
break;
case 1: // REFLECT mode
for(int j = 1; j <= leftOffset; ++j) { // fill left side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset + j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(&subArr);
}
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill right side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + output.sizeAt(dim) + leftOffset - 1 - j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(&subArr);
}
break;
case 2: // SYMMETRIC mode
for(int j = 1; j <= leftOffset; ++j) { // fill left side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset + j - 1]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(&subArr);
}
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill right side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + output.sizeAt(dim) + leftOffset - j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(&subArr);
}
break;
}
}
*/
/*
void recursiveLoopForPad(const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue ) {
BUILD_SINGLE_SELECTOR(input.dataType(), recursiveLoopForPad_, (mode, input, paddings, output, dimensions, dim, inIdx, outIdx, padValue), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void recursiveLoopForPad_, (const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue), LIBND4J_TYPES);
*/
////////////////////////////////////////////////////////////////////////
void invertPermutation(nd4j::LaunchContext * context, const NDArray& input, NDArray& output) {
std::set<int> uniqueElems;
const int length = input.lengthOf();
for(int i = 0; i < length; ++i) {
int elem = input.e<int>(i);
if(!uniqueElems.insert(elem).second) // this operation forbids us to use #pragma omp
throw std::runtime_error("helpers::invertPermutation function: input array contains duplicates !");
if(elem < 0 || elem > length - 1)
throw std::runtime_error("helpers::invertPermutation function: element of input array is out of range (0, length-1) !");
output.p<int>(elem, i);
}
}
////////////////////////////////////////////////////////////////////////
template<typename T>
static void gatherND_(NDArray& input, NDArray& indices, NDArray& output) {
if (input.ordering() != 'c')
input.streamline('c');
if (indices.ordering() != 'c')
indices.streamline('c');
const int rankIn = input.rankOf();
const int rankInd = indices.rankOf();
const int lastIndDim = indices.sizeAt(-1);
std::vector<int> tadDims(rankIn - lastIndDim);
std::iota(tadDims.begin(), tadDims.end(), rankInd-1);
auto innerMostOut = output.allTensorsAlongDimension(tadDims);
auto innerMostInd = indices.allTensorsAlongDimension({rankInd-1});
std::iota(tadDims.begin(), tadDims.end(), lastIndDim);
auto innerMostIn = input.allTensorsAlongDimension(tadDims);
Nd4jLong* outerShapeInfo = nullptr;
ALLOCATE(outerShapeInfo, input.getContext()->getWorkspace(), shape::shapeInfoLength(lastIndDim), Nd4jLong);
outerShapeInfo[0] = lastIndDim;
for(int i = 1; i <= lastIndDim; ++i)
outerShapeInfo[i] = input.sizeAt(i-1);
shape::updateStrides(outerShapeInfo, input.ordering());
Nd4jLong idx[MAX_RANK];
for(int i = 0; i < innerMostInd->size(); ++i) {
auto idxSubArr = innerMostInd->at(i);
for(int j = 0; j < lastIndDim; ++j) {
if(idxSubArr->e<Nd4jLong>(j) >= input.sizeAt(j))
throw std::runtime_error("helpers::gatherND function: indices array contains wrong elements, each element must be smaller than corresponding dimension of input array !");
idx[j] = idxSubArr->e<Nd4jLong>(j);
}
auto currentInd0 = shape::getOffset(0, shape::shapeOf(outerShapeInfo), shape::stride(outerShapeInfo), idx, lastIndDim);
if(rankIn != lastIndDim) {
auto outSubArr = innerMostOut->at(i);
outSubArr->assign(innerMostIn->at(currentInd0));
}
else
output.p(i, input.e<T>(currentInd0));
}
delete innerMostInd;
delete innerMostIn;
delete innerMostOut;
RELEASE(outerShapeInfo, input.getContext()->getWorkspace());
}
void gatherND(nd4j::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), gatherND_, (input, indices, output), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void gatherND_, (NDArray& input, NDArray& indices, NDArray& output), LIBND4J_TYPES);
////////////////////////////////////////////////////////////////////////
template<typename T>
static void gather_(NDArray* input, const NDArray* indices, NDArray* output, const std::vector<int>& intArgs) {
int axis = intArgs.size() > 0 ? intArgs[0] : 0;
const int inputRank = input->rankOf();
if(axis < 0)
axis += inputRank;
const int numOfIntArgs = intArgs.size();
if (indices != nullptr) {
for(int i = 0; i < indices->lengthOf(); ++i)
if(indices->e<Nd4jLong>(i) >= input->sizeAt(axis))
throw std::runtime_error("helpers::gather function: indices array contains wrong elements, each element must be smaller than corresponding dimension of input array !");
// first case: indices consist of only one scalar
if(indices->isScalar()) {
if(input->rankOf() <= 1){
//For scalar indices, rank 0 or 1 input: can't do tensor along dimension 0 as this is whole array... instead, we want to get a scalar
auto idx = indices->e<Nd4jLong>(0);
auto scalarNDArray = input->e(idx);
output->assign(scalarNDArray);
} else {
auto dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {axis});
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto tadArr = NDArray(reinterpret_cast<void *>(reinterpret_cast<T*>(input->getBuffer()) + tadPack.primaryOffsets()[indices->e<Nd4jLong>(0)]), tadPack.primaryShapeInfo(), output->getContext());
output->assign(&tadArr);
}
}
else if (input->rankOf() == 1 && indices->isVector()) {
// special case
PRAGMA_OMP_PARALLEL_FOR_IF(indices->lengthOf() > Environment::getInstance()->tadThreshold())
for (int e = 0; e < indices->lengthOf(); e++)
output->p(e, input->e<T>(indices->e<Nd4jLong>(e)));
}
else {
std::vector<int> dimsOut(indices->rankOf());
std::iota(dimsOut.begin(), dimsOut.end(), axis); // fill with axis, axis+1, ... indices->rankOf()-1
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(output->getShapeInfo(), dimsOut);
PRAGMA_OMP_PARALLEL_FOR_IF(numOfSubArrs > Environment::getInstance()->tadThreshold())
for(int i = 0; i < numOfSubArrs; ++i) {
NDArray subArrOut = (*output)(i, dimsOut);
NDArray subArrIn = (*input)(indices->e<Nd4jLong>(i), {axis});
subArrOut.assign(subArrIn);
}
}
}
else {
for(int i = 1; i < numOfIntArgs; ++i)
if(intArgs[i] >= input->sizeAt(axis))
throw std::runtime_error("helpers::gather function: some of input indexes is larger than corresponding shape of input array !");
// we only allow scalar/vector case here
if (numOfIntArgs == 2) { // scalar case
output->assign((*input)(intArgs[1], {axis}));
}
else { // vector case
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(output->getShapeInfo(), {axis});
PRAGMA_OMP_PARALLEL_FOR_IF(numOfSubArrs > Environment::getInstance()->tadThreshold())
for(int i = 0; i < numOfSubArrs; ++i) {
NDArray subArrOut = (*output)(i, {axis});
NDArray subArrIn = (*input)(intArgs[i+1], {axis});
subArrOut.assign(subArrIn);
}
}
}
}
void gather(NDArray* input, const NDArray* indices, NDArray* output, const std::vector<int>& intArgs) {
BUILD_SINGLE_SELECTOR(input->dataType(), gather_, (input, indices, output, intArgs), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void gather_, (NDArray* input, const NDArray* indices, NDArray* output, const std::vector<int>& intArgs), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
void eye(nd4j::LaunchContext * context, NDArray& output) {
const int rank = output.rankOf();
auto arrs = output.allTensorsAlongDimension({rank-2, rank-1});
PRAGMA_OMP_PARALLEL_FOR_IF(arrs->size() > Environment::getInstance()->tadThreshold())
for(int i = 0; i < arrs->size(); ++i)
arrs->at(i)->setIdentity();
delete arrs;
}
//////////////////////////////////////////////////////////////////////////
void scatterUpdate(nd4j::LaunchContext * context, NDArray& input, NDArray& updates, const std::vector<int>* intArgs) {
int opCode = (*intArgs)[0];
int dimSize = (*intArgs)[1];
Nd4jLong e;
Nd4jLong limg = 2 + dimSize;
std::vector<int> tadDimensions(dimSize);
for (e = 2; e < limg; e++)
tadDimensions[e-2] = (*intArgs)[e];
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(input.rankOf(), tadDimensions);
// increasing counter to skip numIndices
e++;
std::vector<int> indices;
for (; e < intArgs->size(); e++)
indices.push_back((*intArgs)[e]);
PRAGMA_OMP_PARALLEL_FOR
for (Nd4jLong i = 0; i < indices.size(); ++i) {
auto inSubArr = input(indices[i], dimsToExclude, true);
auto updSubArr = updates(i, dimsToExclude, true);
if (inSubArr.lengthOf() != updSubArr.lengthOf())
continue;
switch (opCode) {
case 0:
inSubArr.applyPairwiseTransform(pairwise::Add, &updSubArr, &inSubArr, nullptr);
break;
case 1:
inSubArr.applyPairwiseTransform(pairwise::Subtract, &updSubArr, &inSubArr, nullptr);
break;
case 2:
inSubArr.applyPairwiseTransform(pairwise::Multiply, &updSubArr, &inSubArr, nullptr);
break;
case 3:
inSubArr.applyPairwiseTransform(pairwise::Divide, &updSubArr, &inSubArr, nullptr);
break;
case 4:
inSubArr.applyPairwiseTransform(pairwise::ReverseSubtract, &updSubArr, &inSubArr, nullptr);
break;
case 5:
inSubArr.applyPairwiseTransform(pairwise::ReverseDivide, &updSubArr, &inSubArr, nullptr);
break;
case 6:
inSubArr.applyPairwiseTransform(pairwise::CopyPws, &updSubArr, &inSubArr, nullptr);
break;
default:
continue;
}
}
}
//////////////////////////////////////////////////////////////////////////
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
void scatterSimple(nd4j::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector<int>& dimensions) {
2019-06-06 14:21:15 +02:00
// updates and indices have same length
const Nd4jLong len = indices.lengthOf();
switch (opId) {
case 6: { // copy
PRAGMA_OMP_PARALLEL_FOR_IF(len > Environment::getInstance()->elementwiseThreshold())
for(uint i = 0; i < len; ++i) {
auto inSubArr = input(i, dimensions);
inSubArr.p(indices.t<Nd4jLong>(i), updates.e(i));
}
}
break;
default:
throw std::invalid_argument("helpers::scatterSimple: operation is not implemented for given id !");
}
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeMaxIndex_(const std::vector<NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
auto x = inArrs[0];
PRAGMA_OMP_PARALLEL_FOR_IF(x->lengthOf() > Environment::getInstance()->elementwiseThreshold())
for (Nd4jLong e = 0; e < x->lengthOf(); e++) {
T max = -DataTypeUtils::max<T>();
Nd4jLong idx = 0;
for (int i = 0; i < numArgs; i++){
T v = inArrs[i]->e<T>(e);
if (v > max) {
max = v;
idx = i;
}
}
output.p(e, idx);
}
}
void mergeMaxIndex(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(inArrs[0]->dataType(), mergeMaxIndex_, (inArrs, output), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void mergeMaxIndex_, (const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeMax_(const std::vector<NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
auto x = inArrs[0];
PRAGMA_OMP_PARALLEL_FOR_IF(x->lengthOf() > Environment::getInstance()->elementwiseThreshold())
for (Nd4jLong e = 0; e < x->lengthOf(); e++) {
T max = -DataTypeUtils::max<T>();
for (int i = 0; i < numArgs; i++) {
T v = inArrs[i]->e<T>(e);
if (v > max)
max = v;
}
output.p(e, max);
}
}
void mergeMax(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (inArrs, output), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void mergeMax_, (const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeAvg_(const std::vector<NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
const T factor = 1.f / numArgs;
auto x = inArrs[0];
PRAGMA_OMP_PARALLEL_FOR_IF(x->lengthOf() > Environment::getInstance()->elementwiseThreshold())
for (Nd4jLong e = 0; e < x->lengthOf(); e++) {
T sum = 0.;
for (int i = 0; i < numArgs; i++) {
T v = inArrs[i]->e<T>(e);
sum += v;
}
output.p<T>(e, sum * factor);
}
}
void mergeAvg(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (inArrs, output), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void mergeAvg_, (const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeAdd_(const std::vector<NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
auto x = inArrs[0];
PRAGMA_OMP_PARALLEL_FOR_IF(x->lengthOf() > Environment::getInstance()->elementwiseThreshold())
for (Nd4jLong e = 0; e < x->lengthOf(); e++) {
T sum = (T) 0.f;
for (int i = 0; i < numArgs; i++)
sum += inArrs[i]->e<T>(e);
output.p(e, sum);
}
}
void mergeAdd(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (inArrs, output), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void mergeAdd_, (const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByNorm_(NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
const int rank = input.rankOf();
auto norm2 = input.reduceAlongDims(reduce::Norm2, dimensions);
if (isInplace) {
if(norm2.lengthOf() == 1) {
if(norm2.e<T>(0) > clipNorm.e<T>(0))
input *= (clipNorm.e<T>(0) / norm2.e<T>(0));
}
else {
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(rank, dimensions);
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.getShapeInfo(), dimsToExclude);
PRAGMA_OMP_PARALLEL_FOR
for(Nd4jLong i = 0; i < numOfSubArrs; ++i) {
if (norm2.e<T>(i) > clipNorm.e<T>(0)) {
auto inputSubArr = input(i, dimsToExclude);
inputSubArr *= (clipNorm.e<T>(0) / norm2.e<T>(i));
}
}
}
}
else {
if(norm2.lengthOf() == 1) {
if(norm2.e<T>(0) > clipNorm.e<T>(0))
output.assign( input * (clipNorm / norm2.e<T>(0)));
else
output.assign( input );
}
else {
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(rank, dimensions);
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.getShapeInfo(), dimsToExclude);
std::vector<Nd4jLong> idxRanges(rank * 2);
PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(idxRanges))
for(Nd4jLong i = 0; i < numOfSubArrs; ++i) {
ShapeUtils::evalIdxRangesForSubArr(i, input.getShapeInfo(), dimsToExclude, idxRanges.data());
auto outputSubArr = output(idxRanges);
auto inputSubArr = input(idxRanges);
outputSubArr.assign(inputSubArr);
if (norm2.e<T>(i) > clipNorm.e<T>(0))
outputSubArr *= clipNorm / norm2.e<T>(i);
}
}
}
}
void clipByNorm(nd4j::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
BUILD_SINGLE_SELECTOR(output.dataType(), clipByNorm_, (input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByNorm_, (NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace), FLOAT_TYPES);
template <typename T>
static void clipByGlobalNorm_(std::vector<NDArray*> const& inputs, double clipNorm, nd4j::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
NDArray globalNorm = NDArrayFactory::create<T>(0, inputs[0]->getContext()); //sqrt(sum([l2norm(t)**2 for t in t_list]))
for (auto input: inputs) {
auto l2norm = input->reduceNumber(reduce::Norm2);
globalNorm += l2norm * l2norm;
}
globalNorm.applyTransform(transform::Sqrt, nullptr, nullptr);// = nd4j::math::nd4j_sqrt(globalNorm);
outputs[inputs.size()]->p(0, globalNorm);
const T factor = clipNorm / globalNorm.e<T>(0);
for (size_t e = 0; e < inputs.size(); e++) {
// all-reduce
auto input = inputs[e];
auto output = outputs[e];
if (globalNorm.e<double>(0) <= clipNorm) {
output->assign(input);
}
else {
auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
input->applyLambda<T>(lambda, output);
}
}
}
void clipByGlobalNorm(nd4j::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, nd4j::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
BUILD_SINGLE_SELECTOR(outputs[0]->dataType(), clipByGlobalNorm_, (inputs, clipNorm, workspace, outputs, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByGlobalNorm_, (std::vector<NDArray*> const& inputs, double clipNorm, nd4j::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByNormBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm) {
const int rank = input.rankOf();
auto norm2 = input.reduceAlongDims(reduce::Norm2, dimensions);
if(norm2.lengthOf() == 1) {
const T N = norm2.e<T>(0);
auto cn = clipNorm.e<T>(0);
if(N > cn) {
const T sumOfProd = (input * gradO).reduceNumber(reduce::Sum).e<T>(0); // reduce to scalar
const T factor1 = static_cast<T>(1.f) / N;
const T factor3 = factor1 / (N * N) ; // 1 / (N*N*N)
auto lambda = LAMBDA_TT(elem1, elem2, cn, sumOfProd, factor1, factor3) {
return cn * (factor1 * elem2 - factor3 * elem1 * sumOfProd);
};
(const_cast<NDArray&>(input)).applyPairwiseLambda<T>(const_cast<NDArray*>(&gradO), lambda, &gradI);
}
else
gradI.assign(gradO);
}
else {
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(rank, dimensions);
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.getShapeInfo(), dimsToExclude);
std::vector<Nd4jLong> idxRanges(rank * 2);
PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(idxRanges))
for(Nd4jLong i = 0; i < numOfSubArrs; ++i) {
ShapeUtils::evalIdxRangesForSubArr(i, input.getShapeInfo(), dimsToExclude, idxRanges.data());
T N = norm2.e<T>(i);
auto gradOSubArr = gradO(idxRanges);
auto gradISubArr = gradI(idxRanges);
auto cn = clipNorm.e<T>(0);
if (N > cn) {
auto inputSubArr = input(idxRanges);
const T sumOfProd = (inputSubArr * gradOSubArr).reduceNumber(reduce::Sum).e<T>(0); // reduce to scalar
const T factor1 = static_cast<T>(1.f) / N;
const T factor3 = factor1 / (N * N) ; // 1 / (N*N*N)
auto lambda = LAMBDA_TT(elem1, elem2, cn, sumOfProd, factor1, factor3) {
return cn * (factor1 * elem2 - factor3 * elem1 * sumOfProd);
};
inputSubArr.applyPairwiseLambda<T>(&gradOSubArr, lambda, &gradISubArr);
}
else
gradISubArr.assign(gradOSubArr);
}
}
}
void clipByNormBP(nd4j::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm) {
BUILD_SINGLE_SELECTOR(gradI.dataType(), clipByNormBP_, (input, gradO, gradI, dimensions, clipNorm), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByNormBP_, (const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByAveraged_(NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
auto cn = clipNorm.e<T>(0);
if (dimensions.size() == 0) {
// all-reduce
T n2 = input.reduceNumber(reduce::Norm2).e<T>(0) / input.lengthOf();
if (n2 <= cn) {
if (!isInplace)
output.assign(input);
}
else {
const T factor = cn / n2;
auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
input.applyLambda<T>(lambda, &output);
}
}
else {
// along dimension
auto norm2 = input.reduceAlongDims(reduce::Norm2, dimensions, false);
if (!isInplace)
output.assign(input);
auto tads = output.allTensorsAlongDimension(dimensions);
// TODO: make this CUDA-compliant somehow
for (int e = 0; e < tads->size(); e++) {
T n2 = norm2.e<T>(e) / tads->at(e)->lengthOf();
const T factor = cn / n2;
if (n2 > cn) {
auto lambda = LAMBDA_T(_x, factor) {return _x * factor;};
tads->at(e)->applyLambda<T>(lambda, &output);
}
}
delete tads;
}
}
void clipByAveraged(nd4j::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByAveraged_, (input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByAveraged_, (NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace), FLOAT_TYPES);
/*
if (d1 > params[1])
return params[1];
else if (d1 < params[0])
return params[0];
else return d1;
*/
template <typename T>
static void clipByValue_(NDArray& input, double leftBound, double rightBound, NDArray& output) {
auto routine = LAMBDA_T(_x, leftBound, rightBound) {
if (_x > rightBound) return rightBound;
if (_x < leftBound) return leftBound;
return _x;
};
input.applyLambda<T>(routine, &output);
}
void clipByValue(nd4j::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByValue_, (input, leftBound, rightBound, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByValue_, (NDArray& input, double leftBound, double rightBound, NDArray& output);, FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mirrorPad_(const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
// mode: 0 - REFLECT, else - SYMMETRIC
const int reflBorder = (bool)mode ? 1 : 0;
const int rank = input.rankOf();
const Nd4jLong outLen = output.lengthOf();
if(rank <= 1) {
const Nd4jLong inLen = input.lengthOf();
const auto leftSide = paddings.e<Nd4jLong>(0);
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2*(inLen-1) + leftSide + reflBorder;
for(int i = 0; i < outLen; ++i) {
if (i < leftSide) // left side
output.p(i, input.e<T>(leftSideCorrected - i));
else if(i >= leftSide && i < leftSide + inLen) // middle
output.p(i, input.e<T>(i - leftSide));
else // right side
output.p(i, input.e<T>(len - i));
}
}
else {
std::vector<Nd4jLong> inIdx(rank), outIdx(rank);
PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(inIdx, outIdx))
for(int i = 0; i < outLen; ++i) {
shape::index2coords(rank, output.shapeOf(), i, outIdx.data());
for(int j = 0; j < rank; ++j) {
const Nd4jLong inLen = input.sizeAt(j);
const auto leftSide = paddings.e<T>(j, 0);
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2*(inLen-1) + leftSide + reflBorder;
if(outIdx[j] < leftSide) // left side
inIdx[j] = leftSideCorrected - outIdx[j];
else if(outIdx[j] >= leftSide && outIdx[j] < leftSide + inLen) // middle
inIdx[j] = outIdx[j] - leftSide;
else // right side
inIdx[j] = len - outIdx[j];
}
auto outOffset = shape::getOffset(0, output.shapeOf(), output.stridesOf(), outIdx.data(), rank);
auto inOffset = shape::getOffset(0, input.shapeOf(), input.stridesOf(), inIdx.data(), rank);
reinterpret_cast<T*>(output.buffer())[outOffset] = reinterpret_cast<T*>(input.getBuffer())[inOffset];
}
}
}
void mirrorPad(nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
BUILD_SINGLE_SELECTOR(input.dataType(), mirrorPad_, (input, paddings, output, mode), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void mirrorPad_, (const NDArray& input, const NDArray& paddings, NDArray& output, const int mode), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void concat_(const std::vector<NDArray*>& inArrs, NDArray& output, const int axis) {
nd4j::SpecialMethods<T>::concatCpuGeneric(inArrs, output, axis);
2019-06-06 14:21:15 +02:00
}
void concat(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output, const int axis) {
BUILD_SINGLE_SELECTOR(output.dataType(), concat_,(inArrs, output, axis), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void concat_, (const std::vector<NDArray*>& inArrs, NDArray& output, const int axis), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void tileBP_(const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector<Nd4jLong> reps) {
T* gradIBuff = reinterpret_cast<T*>(gradI.getBuffer());
const T* gradOBuff = reinterpret_cast<T*>(gradO.getBuffer());
const Nd4jLong gradILen = gradI.lengthOf();
const Nd4jLong gradOLen = gradO.lengthOf(); // gradOLen >= gradILen
const Nd4jLong gradIEWS = nd4j::math::nd4j_abs<Nd4jLong>(gradI.ews());
const Nd4jLong gradOEWS = gradO.ews();
// initial zeroing of gradI content
if(gradIEWS == 1)
memset(gradIBuff, 0, gradILen * sizeof(T));
else {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for (int i = 0; i < gradILen * gradIEWS; i += gradIEWS)
gradIBuff[i] = static_cast<T>(0.f);
}
if(gradO.ordering() == 'c' && gradOEWS == 1) {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for(Nd4jLong i=0; i<gradOLen; ++i) {
auto idx = shape::subArrayIndex(i, gradO.getShapeInfo(), gradI.getShapeInfo());
gradI.p(idx, gradI.e<T>(idx) + gradOBuff[i]);
}
}
else if(gradO.ordering() == 'c' && gradOEWS > 1) {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for(Nd4jLong i=0; i<gradOLen; ++i) {
auto idx = shape::subArrayIndex(i, gradO.getShapeInfo(), gradI.getShapeInfo());
gradI.p(idx, gradI.e<T>(idx) + gradOBuff[i * gradOEWS]);
}
}
else {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for(Nd4jLong i=0; i<gradOLen; ++i) {
auto fidx = shape::subArrayIndex(i, gradO.getShapeInfo(), gradI.getShapeInfo());
gradI.p(fidx, gradI.e<T>(fidx) + gradOBuff[shape::getIndexOffset(i, gradO.getShapeInfo(), gradOLen)]);
}
}
}
void tileBP(nd4j::LaunchContext * context, const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector<Nd4jLong> reps) {
BUILD_SINGLE_SELECTOR(gradI.dataType(), tileBP_, (gradO, gradI, reps), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void tileBP_, (const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector<Nd4jLong> reps), FLOAT_TYPES);
}
}
}