117 lines
5.4 KiB
C++
117 lines
5.4 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2019-2020 Konduit K.K.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
|
||
|
//
|
||
|
|
||
|
#include <ops/declarable/helpers/updatersHelpers.h>
|
||
|
#include <execution/Threads.h>
|
||
|
#include <math/platformmath.h>
|
||
|
#include <math/templatemath.h>
|
||
|
|
||
|
namespace sd {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
template <typename T>
|
||
|
static void nadamUpdater_(const NDArray& gradient, const NDArray& initStateV, const NDArray& initStateM,
|
||
|
NDArray& update, NDArray& stateV, NDArray& stateM, const double dLr, const double dBeta1,
|
||
|
const double dBeta2, const double dEpsilon, const int nIteration) {
|
||
|
|
||
|
const T* grad = gradient.bufferAsT<T>();
|
||
|
const T* initV = initStateV.bufferAsT<T>();
|
||
|
const T* initM = initStateM.bufferAsT<T>();
|
||
|
|
||
|
T* up = update.bufferAsT<T>();
|
||
|
T* stV = stateV.bufferAsT<T>();
|
||
|
T* stM = stateM.bufferAsT<T>();
|
||
|
|
||
|
const T lr = static_cast<T>(dLr);
|
||
|
const T beta1 = static_cast<T>(dBeta1);
|
||
|
const T beta2 = static_cast<T>(dBeta2);
|
||
|
const T epsilon = static_cast<T>(dEpsilon);
|
||
|
const T iteration = static_cast<T>(nIteration);
|
||
|
|
||
|
const T mbeta1T = 1.0 - sd::math::nd4j_pow<T, T, T>(beta1, (iteration + 1));
|
||
|
const T mbeta1 = (1 - beta1);
|
||
|
const T mbeta2 = (1 - beta2);
|
||
|
|
||
|
bool bEws1 = 1 == gradient.ews() && 1 == update.ews() && 1 == stateM.ews() && 1 == initStateM.ews() && 1 == stateV.ews() && 1 == initStateV.ews();
|
||
|
bool bSameOrdering = gradient.ordering() == update.ordering() &&
|
||
|
update.ordering() == stateV.ordering() &&
|
||
|
stateV.ordering() == initStateV.ordering() &&
|
||
|
stateV.ordering() == initStateM.ordering() && stateM.ordering() == initStateM.ordering();
|
||
|
|
||
|
if (bEws1 && bSameOrdering) {
|
||
|
|
||
|
auto func = PRAGMA_THREADS_FOR{
|
||
|
for (auto i = start; i < stop; i++) {
|
||
|
auto oneMinusBeta1Grad = grad[i] * mbeta1;
|
||
|
|
||
|
stM[i] = beta1 * initM[i] + oneMinusBeta1Grad;
|
||
|
stV[i] = beta2 * initV[i] + grad[i] * grad[i] * mbeta2;
|
||
|
|
||
|
up[i] = (lr * ((stM[i] * beta1 + oneMinusBeta1Grad) / mbeta1T)) / (sd::math::nd4j_sqrt<T, T>(stV[i]) + epsilon);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
samediff::Threads::parallel_for(func, 0, gradient.lengthOf(), 1);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
bool bXZsame = shape::haveSameShapeAndStrides(gradient.getShapeInfo(), update.getShapeInfo());
|
||
|
bool bXInVSame = shape::haveSameShapeAndStrides(gradient.getShapeInfo(), initStateV.getShapeInfo());
|
||
|
bool bXStVSame = shape::haveSameShapeAndStrides(gradient.getShapeInfo(), stateV.getShapeInfo());
|
||
|
bool bXInMSame = shape::haveSameShapeAndStrides(gradient.getShapeInfo(), initStateM.getShapeInfo());
|
||
|
bool bXStMSame = shape::haveSameShapeAndStrides(gradient.getShapeInfo(), stateM.getShapeInfo());
|
||
|
|
||
|
auto func = PRAGMA_THREADS_FOR{
|
||
|
|
||
|
int coords[MAX_RANK];
|
||
|
for (auto i = start; i < stop; i++) {
|
||
|
shape::index2coordsCPU(start, i, gradient.getShapeInfo(), coords);
|
||
|
const auto xOffset = shape::getOffset(gradient.getShapeInfo(), coords);
|
||
|
const auto zOffset = bXZsame ? xOffset : shape::getOffset(update.getShapeInfo(), coords);
|
||
|
const auto initVOffset = bXInVSame ? xOffset : shape::getOffset(initStateV.getShapeInfo(), coords);
|
||
|
const auto stVOffset = bXStVSame ? xOffset : shape::getOffset(stateV.getShapeInfo(), coords);
|
||
|
const auto initMOffset = bXInMSame ? xOffset : shape::getOffset(initStateM.getShapeInfo(), coords);
|
||
|
const auto stMOffset = bXStMSame ? xOffset : shape::getOffset(stateM.getShapeInfo(), coords);
|
||
|
|
||
|
auto oneMinusBeta1Grad = grad[xOffset] * mbeta1;
|
||
|
|
||
|
stM[stMOffset] = beta1 * initM[initMOffset] + oneMinusBeta1Grad;
|
||
|
stV[stVOffset] = beta2 * initV[initVOffset] + grad[xOffset] * grad[xOffset] * mbeta2;
|
||
|
|
||
|
up[zOffset] = (lr * ((stM[stMOffset] * beta1 + oneMinusBeta1Grad) / mbeta1T)) / (sd::math::nd4j_sqrt<T, T>(stV[stVOffset]) + epsilon);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
samediff::Threads::parallel_for(func, 0, gradient.lengthOf(), 1);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void updaterNadam(sd::LaunchContext* context, const NDArray& gradient, const NDArray& initStateV, const NDArray& initStateM,
|
||
|
NDArray& update, NDArray& stateV, NDArray& stateM, const double dLr, const double dBeta1, const double dBeta2, const double dEpsilon, const int nIteration) {
|
||
|
BUILD_SINGLE_SELECTOR(gradient.dataType(), nadamUpdater_, (gradient, initStateV, initStateM, update, stateV, stateM, dLr, dBeta1, dBeta2, dEpsilon, nIteration), FLOAT_TYPES);
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|