112 lines
4.2 KiB
Java
Raw Normal View History

2019-06-06 15:21:15 +03:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.earlystopping.saver;
import org.apache.commons.io.FilenameUtils;
import org.deeplearning4j.earlystopping.EarlyStoppingModelSaver;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.util.ModelSerializer;
import java.io.File;
import java.io.IOException;
import java.nio.charset.Charset;
/** Save the best (and latest/most recent) models learned during early stopping training to the local file system.<br>
* Instances of this class will save 3 files for best (and optionally, latest) models:<br>
* (a) The network configuration: bestModelConf.json<br>
* (b) The network parameters: bestModelParams.bin<br>
* (c) The network updater: bestModelUpdater.bin<br>
* <br>
* NOTE: The model updater is an object that contains the internal state for training features such as AdaGrad, Momentum
* and RMSProp.<br>
* The updater is <i>not</i> required to use the network at test time; it is saved in case further training is required.
* Without saving the updater, any further training would result in the updater being recreated, without the benefit
* of the history/internal state. This could negatively impact training performance after loading the network.
*
* @author Alex Black
*/
public class LocalFileModelSaver implements EarlyStoppingModelSaver<MultiLayerNetwork> {
private static final String BEST_MODEL_BIN = "bestModel.bin";
private static final String LATEST_MODEL_BIN = "latestModel.bin";
private String directory;
private Charset encoding;
public LocalFileModelSaver(File directory){
this(directory.getAbsolutePath());
}
/**Constructor that uses default character set for configuration (json) encoding
* @param directory Directory to save networks
*/
public LocalFileModelSaver(String directory) {
this(directory, Charset.defaultCharset());
}
/**
* @param directory Directory to save networks
* @param encoding Character encoding for configuration (json)
*/
public LocalFileModelSaver(String directory, Charset encoding) {
this.directory = directory;
this.encoding = encoding;
File dir = new File(directory);
if (!dir.exists()) {
dir.mkdirs();
}
}
@Override
public void saveBestModel(MultiLayerNetwork net, double score) throws IOException {
String confOut = FilenameUtils.concat(directory, BEST_MODEL_BIN);
save(net, confOut);
}
@Override
public void saveLatestModel(MultiLayerNetwork net, double score) throws IOException {
String confOut = FilenameUtils.concat(directory, LATEST_MODEL_BIN);
save(net, confOut);
}
@Override
public MultiLayerNetwork getBestModel() throws IOException {
String confOut = FilenameUtils.concat(directory, BEST_MODEL_BIN);
return load(confOut);
}
@Override
public MultiLayerNetwork getLatestModel() throws IOException {
String confOut = FilenameUtils.concat(directory, LATEST_MODEL_BIN);
return load(confOut);
}
private void save(MultiLayerNetwork net, String modelName) throws IOException {
ModelSerializer.writeModel(net, modelName, true);
}
private MultiLayerNetwork load(String modelName) throws IOException {
MultiLayerNetwork net = ModelSerializer.restoreMultiLayerNetwork(modelName);
return net;
}
@Override
public String toString() {
return "LocalFileModelSaver(dir=" + directory + ")";
}
}