cavis/libnd4j/include/ops/declarable/generic/parity_ops/confusion_matrix.cpp

88 lines
3.6 KiB
C++
Raw Normal View History

2021-02-01 13:31:45 +01:00
/* ******************************************************************************
*
2019-06-06 14:21:15 +02:00
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
2021-02-01 13:31:45 +01:00
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
2019-06-06 14:21:15 +02:00
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author @cpuheater
//
#include <system/op_boilerplate.h>
2019-06-06 14:21:15 +02:00
#if NOT_EXCLUDED(OP_confusion_matrix)
#include <ops/declarable/CustomOperations.h>
#include <helpers/ShapeUtils.h>
#include <array/NDArray.h>
2019-06-06 14:21:15 +02:00
#include <array/NDArrayList.h>
#include <array>
#include <ops/declarable/helpers/confusion.h>
namespace sd {
2019-06-06 14:21:15 +02:00
namespace ops {
DECLARE_TYPES(confusion_matrix) {
getOpDescriptor()
->setAllowedInputTypes({ALL_INTS, ALL_FLOATS})
->setAllowedOutputTypes({ALL_FLOATS, ALL_INTS});
}
CUSTOM_OP_IMPL(confusion_matrix, 2, 1, false, 0, -2) {
auto labels = INPUT_VARIABLE(0);
auto predictions = INPUT_VARIABLE(1);
NDArray *weights = nullptr;
if(block.width() > 2){
weights = INPUT_VARIABLE(2);
REQUIRE_TRUE(weights->isSameShape(predictions),0, "CONFUSION_MATRIX: Weights and predictions should have equal shape");
}
auto output = OUTPUT_NULLIFIED(0);
2019-06-06 14:21:15 +02:00
int minPrediction = predictions->reduceNumber(reduce::Min).e<int>(0);
int minLabel = labels->reduceNumber(reduce::Min).e<int>(0);
REQUIRE_TRUE(minLabel >=0, 0, "CONFUSION_MATRIX: Labels contains negative values !");
REQUIRE_TRUE(minPrediction >=0, 0, "CONFUSION_MATRIX: Predictions contains negative values !");
REQUIRE_TRUE(labels->isVector(), 0, "CONFUSION_MATRIX: Labels input should be a Vector, but got %iD instead", labels->rankOf());
REQUIRE_TRUE(predictions->isVector(), 0, "CONFUSION_MATRIX: Predictions input should be Vector, but got %iD instead", predictions->rankOf());
REQUIRE_TRUE(labels->isSameShape(predictions),0, "CONFUSION_MATRIX: Labels and predictions should have equal shape");
helpers::confusionFunctor(block.launchContext(), labels, predictions, weights, output);
return Status::OK();
}
DECLARE_SHAPE_FN(confusion_matrix) {
auto labels = INPUT_VARIABLE(0);
auto predictions = INPUT_VARIABLE(1);
auto dtype = block.numD() ? D_ARG(0) : sd::DataType::INT64;
2019-06-06 14:21:15 +02:00
int numClasses = 0;
if (block.getIArguments()->size() > 0) {
numClasses = INT_ARG(0);
}
else {
int maxPrediction = predictions->reduceNumber(reduce::Max).e<int>(0);
int maxLabel = labels->reduceNumber(reduce::Max).e<int>(0);
numClasses = (maxPrediction >= maxLabel) ? maxPrediction+1 : maxLabel+1;
}
std::array<Nd4jLong, 2> shape = {{numClasses,numClasses}};
auto newShape = ConstantShapeHelper::getInstance().createShapeInfo(dtype, 'c', 2, shape.data());
2019-06-06 14:21:15 +02:00
return SHAPELIST(newShape);
}
}
}
#endif